304041: CF776E. The Holmes Children
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
The Holmes Children
题意翻译
定义函数$f$. $f(1)=1,f(n)=\sum_{i=1 \to n-1}[gcd(i,n-i)=1].$ 定义函数$g$. $g(n)=\sum_{d|n}f(\frac{n}{d})$. 定义函数$F_k(n)$. $F_k(n)=f(g(n))$,当且仅当$k=1$. $F_k(n)=g(F_{k-1}(n))$,当且仅当$k>1,k$为偶数. $F_k(n)=f(F_{k-1}(n))$,当且仅当$k>1,k$为奇数. 给定$n,k$,求$F_k(n)$. $n,k<=10^{12}$.题目描述
The Holmes children are fighting over who amongst them is the cleverest. Mycroft asked Sherlock and Eurus to find value of $ f(n) $ , where $ f(1)=1 $ and for $ n>=2 $ , $ f(n) $ is the number of distinct ordered positive integer pairs $ (x,y) $ that satisfy $ x+y=n $ and $ gcd(x,y)=1 $ . The integer $ gcd(a,b) $ is the greatest common divisor of $ a $ and $ b $ . Sherlock said that solving this was child's play and asked Mycroft to instead get the value of ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF776E/1a109f1de0f9bab1129f477d3f3eae085caca16a.png). Summation is done over all positive integers $ d $ that divide $ n $ . Eurus was quietly observing all this and finally came up with her problem to astonish both Sherlock and Mycroft. She defined a $ k $ -composite function $ F_{k}(n) $ recursively as follows: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF776E/bd985db890d6882c9f46cc152e6a148e4e80dbfa.png)She wants them to tell the value of $ F_{k}(n) $ modulo $ 1000000007 $ .输入输出格式
输入格式
A single line of input contains two space separated integers $ n $ ( $ 1<=n<=10^{12} $ ) and $ k $ ( $ 1<=k<=10^{12} $ ) indicating that Eurus asks Sherlock and Mycroft to find the value of $ F_{k}(n) $ modulo $ 1000000007 $ .
输出格式
Output a single integer — the value of $ F_{k}(n) $ modulo $ 1000000007 $ .
输入输出样例
输入样例 #1
7 1
输出样例 #1
6
输入样例 #2
10 2
输出样例 #2
4