311329: CF1970E3. Trails (Hard)

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

E3. Trails (Hard)time limit per test2 secondsmemory limit per test256 megabytesinputstandard inputoutputstandard output

Harry Potter is hiking in the Alps surrounding Lake Geneva. In this area there are $m$ cabins, numbered 1 to $m$. Each cabin is connected, with one or more trails, to a central meeting point next to the lake. Each trail is either short or long. Cabin $i$ is connected with $s_i$ short trails and $l_i$ long trails to the lake.

Each day, Harry walks a trail from the cabin where he currently is to Lake Geneva, and then from there he walks a trail to any of the $m$ cabins (including the one he started in). However, as he has to finish the hike in a day, at least one of the two trails has to be short.

How many possible combinations of trails can Harry take if he starts in cabin 1 and walks for $n$ days?

Give the answer modulo $10^9 + 7$.

Input

The first line contains the integers $m$ and $n$.

The second line contains $m$ integers, $s_1, \dots, s_m$, where $s_i$ is the number of short trails between cabin $i$ and Lake Geneva.

The third and last line contains $m$ integers, $l_1, \dots, l_m$, where $l_i$ is the number of long trails between cabin $i$ and Lake Geneva.

We have the following constraints:

$0 \le s_i, l_i \le 10^3$.

$1 \le m \le 10^5$.

$1 \le n \le 10^9$.

Output

The number of possible combinations of trails, modulo $10^9 + 7$.

ExampleInput
3 2
1 0 1
0 1 1
Output
18

Output

题目大意:
哈里·波特正在日内瓦湖周围的阿尔卑斯山脉远足。在这一地区有 m 栋小屋,编号从 1 到 m。每栋小屋都与湖边的中心集合点通过一条或多条小径相连。每条小径要么是短的,要么是长的。小屋 i 通过 s_i 条短途小径和 l_i 条长途小径与湖相连。

每天,哈里从当前所在的小屋走一条小径到日内瓦湖,然后从那里走一条小径到任何一栋 m 栋小屋(包括他开始的那一栋)。然而,由于他必须在一天内完成远足,至少两条小径中有一条必须是短的。

如果哈里从 1 号小屋开始,走 n 天,有多少种可能的路径组合?

给出答案对 10^9 + 7 取模的结果。

输入数据格式:
第一行包含整数 m 和 n。
第二行包含 m 个整数,s_1, ..., s_m,其中 s_i 是小屋 i 与日内瓦湖之间的短途小径数。
第三行也是最后一样,包含 m 个整数,l_1, ..., l_m,其中 l_i 是小屋 i 与日内瓦湖之间的长途小径数。
满足以下约束条件:
0 ≤ s_i, l_i ≤ 10^3
1 ≤ m ≤ 10^5
1 ≤ n ≤ 10^9

输出数据格式:
可能的小径组合数,模 10^9 + 7。

示例:
输入:
3 2
1 0 1
0 1 1

输出:
18题目大意: 哈里·波特正在日内瓦湖周围的阿尔卑斯山脉远足。在这一地区有 m 栋小屋,编号从 1 到 m。每栋小屋都与湖边的中心集合点通过一条或多条小径相连。每条小径要么是短的,要么是长的。小屋 i 通过 s_i 条短途小径和 l_i 条长途小径与湖相连。 每天,哈里从当前所在的小屋走一条小径到日内瓦湖,然后从那里走一条小径到任何一栋 m 栋小屋(包括他开始的那一栋)。然而,由于他必须在一天内完成远足,至少两条小径中有一条必须是短的。 如果哈里从 1 号小屋开始,走 n 天,有多少种可能的路径组合? 给出答案对 10^9 + 7 取模的结果。 输入数据格式: 第一行包含整数 m 和 n。 第二行包含 m 个整数,s_1, ..., s_m,其中 s_i 是小屋 i 与日内瓦湖之间的短途小径数。 第三行也是最后一样,包含 m 个整数,l_1, ..., l_m,其中 l_i 是小屋 i 与日内瓦湖之间的长途小径数。 满足以下约束条件: 0 ≤ s_i, l_i ≤ 10^3 1 ≤ m ≤ 10^5 1 ≤ n ≤ 10^9 输出数据格式: 可能的小径组合数,模 10^9 + 7。 示例: 输入: 3 2 1 0 1 0 1 1 输出: 18

加入题单

上一题 下一题 算法标签: