311300: CF1967F. Next and Prev
Description
Let $p_1, \ldots, p_n$ be a permutation of $[1, \ldots, n]$.
Let the $q$-subsequence of $p$ be a permutation of $[1, q]$, whose elements are in the same relative order as in $p_1, \ldots, p_n$. That is, we extract all elements not exceeding $q$ together from $p$ in the original order, and they make the $q$-subsequence of $p$.
For a given array $a$, let $pre(i)$ be the largest value satisfying $pre(i) < i$ and $a_{pre(i)} > a_i$. If it does not exist, let $pre(i) = -10^{100}$. Let $nxt(i)$ be the smallest value satisfying $nxt(i) > i$ and $a_{nxt(i)} > a_i$. If it does not exist, let $nxt(i) = 10^{100}$.
For each $q$ such that $1 \leq q \leq n$, let $a_1, \ldots, a_q$ be the $q$-subsequence of $p$. For each $i$ such that $1 \leq i \leq q$, $pre(i)$ and $nxt(i)$ will be calculated as defined. Then, you will be given some integer values of $x$, and for each of them you have to calculate $\sum\limits_{i=1}^q \min(nxt(i) - pre(i), x)$.
InputEach test contains multiple test cases. The first line contains the number of test cases $t$ ($1\le t\le 10^4$). The description of the test cases follows.
The first line of each test case contains a single integer $n$ ($1 \leq n \leq 3\cdot 10^5$) — the length of the permutation.
The second line of each test case contains $n$ integers $p_1, \ldots, p_n$ ($1 \leq p_i \leq n$) — the initial permutation.
Then, for each $q$ such that $1 \leq q \leq n$ in ascending order, you will be given an integer $k$ ($0 \leq k \leq 10^5$), representing the number of queries for the $q$-subsequence. Then $k$ numbers in a line follow: each of them is the value of $x$ for a single query ($1 \leq x \leq q$).
It is guaranteed that the sum of $n$ over all test cases does not exceed $3\cdot 10^5$ and the sum of $k$ over all test cases does not exceed $10^5$.
OutputFor each test case, for each query, print a single line with an integer: the answer to the query.
ExampleInput1 7 6 1 4 3 2 5 7 1 1 0 1 3 1 2 3 1 2 3 1 3 2 2 6Output
1 9 8 5 10 14 16 14 30Note
The $1$-subsequence is $[1]$, and $pre=[-10^{100}]$, $nxt=[10^{100}]$. $ans(1)=\min(10^{100}-(-10^{100}),1)=1$.
The $5$-subsequence is $[1,4,3,2,5]$, and $pre=[-10^{100},-10^{100},2,3,-10^{100}]$, $nxt=[2,5,5,5,10^{100}]$. $ans(1)=5,ans(2)=10,ans(3)=14$.
Output
给定一个长度为n的排列p_1, ..., p_n,排列的元素为[1, ..., n]。定义p的q子序列为[1, q]的一个排列,其元素在p_1, ..., p_n中保持相同的相对顺序。即从p中按原始顺序提取所有不超过q的元素,它们构成p的q子序列。
对于一个给定的数组a,定义pre(i)为满足pre(i) < i且a_{pre(i)} > a_i的最大值。如果不存在,则令pre(i) = -10^100。定义nxt(i)为满足nxt(i) > i且a_{nxt(i)} > a_i的最小值。如果不存在,则令nxt(i) = 10^100。
对于每个1 ≤ q ≤ n,设a_1, ..., a_q为p的q子序列。对于每个1 ≤ i ≤ q,根据定义计算pre(i)和nxt(i)。然后,给出一些整数x的值,对于每个x计算Σ(min(nxt(i) - pre(i), x))。
输入输出数据格式:
每个测试包含多个测试用例。第一行包含测试用例数t(1 ≤ t ≤ 10^4)。接下来是每个测试用例的描述。
每个测试用例的第一行包含一个整数n(1 ≤ n ≤ 3×10^5)——排列的长度。
每个测试用例的第二行包含n个整数p_1, ..., p_n(1 ≤ p_i ≤ n)——初始排列。
然后,按升序对于每个1 ≤ q ≤ n,给出一个整数k(0 ≤ k ≤ 10^5),表示对q子序列的查询数。接下来一行包含k个数:每个数是单个查询的x值(1 ≤ x ≤ q)。
保证所有测试用例的n之和不超过3×10^5,k之和不超过10^5。
对于每个测试用例,对于每个查询,输出一行,包含一个整数:查询的答案。题目大意: 给定一个长度为n的排列p_1, ..., p_n,排列的元素为[1, ..., n]。定义p的q子序列为[1, q]的一个排列,其元素在p_1, ..., p_n中保持相同的相对顺序。即从p中按原始顺序提取所有不超过q的元素,它们构成p的q子序列。 对于一个给定的数组a,定义pre(i)为满足pre(i) < i且a_{pre(i)} > a_i的最大值。如果不存在,则令pre(i) = -10^100。定义nxt(i)为满足nxt(i) > i且a_{nxt(i)} > a_i的最小值。如果不存在,则令nxt(i) = 10^100。 对于每个1 ≤ q ≤ n,设a_1, ..., a_q为p的q子序列。对于每个1 ≤ i ≤ q,根据定义计算pre(i)和nxt(i)。然后,给出一些整数x的值,对于每个x计算Σ(min(nxt(i) - pre(i), x))。 输入输出数据格式: 每个测试包含多个测试用例。第一行包含测试用例数t(1 ≤ t ≤ 10^4)。接下来是每个测试用例的描述。 每个测试用例的第一行包含一个整数n(1 ≤ n ≤ 3×10^5)——排列的长度。 每个测试用例的第二行包含n个整数p_1, ..., p_n(1 ≤ p_i ≤ n)——初始排列。 然后,按升序对于每个1 ≤ q ≤ n,给出一个整数k(0 ≤ k ≤ 10^5),表示对q子序列的查询数。接下来一行包含k个数:每个数是单个查询的x值(1 ≤ x ≤ q)。 保证所有测试用例的n之和不超过3×10^5,k之和不超过10^5。 对于每个测试用例,对于每个查询,输出一行,包含一个整数:查询的答案。