311298: CF1967E1. Again Counting Arrays (Easy Version)
Description
This is the easy version of the problem. The differences between the two versions are the constraints on $n, m, b_0$ and the time limit. You can make hacks only if both versions are solved.
Little R has counted many sets before, and now she decides to count arrays.
Little R thinks an array $b_0, \ldots, b_n$ consisting of non-negative integers is continuous if and only if, for each $i$ such that $1 \leq i \leq n$, $\lvert b_i - b_{i-1} \rvert = 1$ is satisfied. She likes continuity, so she only wants to generate continuous arrays.
If Little R is given $b_0$ and $a_1, \ldots, a_n$, she will try to generate a non-negative continuous array $b$, which has no similarity with $a$. More formally, for all $1 \leq i \leq n$, $a_i \neq b_i$ holds.
However, Little R does not have any array $a$. Instead, she gives you $n$, $m$ and $b_0$. She wants to count the different integer arrays $a_1, \ldots, a_n$ satisfying:
- $1 \leq a_i \leq m$;
- At least one non-negative continuous array $b_0, \ldots, b_n$ can be generated.
Note that $b_i \geq 0$, but the $b_i$ can be arbitrarily large.
Since the actual answer may be enormous, please just tell her the answer modulo $998\,244\,353$.
InputEach test contains multiple test cases. The first line contains the number of test cases $t\ (1 \leq t \leq 10^4)$. The description of the test cases follows.
The first and only line of each test case contains three integers $n$, $m$, and $b_0$ ($1 \leq n \leq 2 \cdot 10^5$, $1 \leq m \leq 2 \cdot 10^5$, $0 \leq b_0 \leq 2\cdot 10^5$) — the length of the array $a_1, \ldots, a_n$, the maximum possible element in $a_1, \ldots, a_n$, and the initial element of the array $b_0, \ldots, b_n$.
It is guaranteed that the sum of $n$ over all test cases does not exceeds $2\cdot 10^5$.
OutputFor each test case, output a single line containing an integer: the number of different arrays $a_1, \ldots, a_n$ satisfying the conditions, modulo $998\,244\,353$.
ExampleInput6 3 2 1 5 5 3 13 4 1 100 6 7 100 11 3 1000 424 132Output
6 3120 59982228 943484039 644081522 501350342Note
In the first test case, for example, when $a = [1, 2, 1]$, we can set $b = [1, 0, 1, 0]$. When $a = [1, 1, 2]$, we can set $b = [1, 2, 3, 4]$. In total, there are $6$ valid choices of $a_1, \ldots, a_n$: in fact, it can be proved that only $a = [2, 1, 1]$ and $a = [2, 1, 2]$ make it impossible to construct a non-negative continuous $b_0, \ldots, b_n$, so the answer is $2^3 - 2 = 6$.
Output
这是一个关于生成特定类型数组的计数问题。给定一个非负整数数组b0, ..., bn,如果对于每个1 ≤ i ≤ n,都满足|bi - bi-1| = 1,则称这个数组是连续的。现在,给定一个整数b0和另一个整数数组a1, ..., an,要生成一个非负的连续数组b,且b与a不相似,即对于所有1 ≤ i ≤ n,有ai ≠ bi。现在没有给出数组a,而是给出n, m和b0,要求计算有多少种不同的整数数组a1, ..., an满足以下条件:
1. 1 ≤ ai ≤ m;
2. 可以生成至少一个非负连续数组b0, ..., bn。
输入输出数据格式:
输入:
- 第一行包含一个整数t(1 ≤ t ≤ 10^4),表示测试用例的数量。
- 每个测试用例包含一行,包含三个整数n, m, 和b0(1 ≤ n ≤ 2 × 10^5,1 ≤ m ≤ 2 × 10^5,0 ≤ b0 ≤ 2 × 10^5)——数组a1, ..., an的长度,a1, ..., an中最大可能的元素,以及数组b0, ..., bn的初始元素。
输出:
- 对于每个测试用例,输出一行,包含一个整数:满足条件的不同数组a1, ..., an的数量,模998,244,353。
注意:由于实际答案可能非常大,只需给出模998,244,353的结果。题目大意: 这是一个关于生成特定类型数组的计数问题。给定一个非负整数数组b0, ..., bn,如果对于每个1 ≤ i ≤ n,都满足|bi - bi-1| = 1,则称这个数组是连续的。现在,给定一个整数b0和另一个整数数组a1, ..., an,要生成一个非负的连续数组b,且b与a不相似,即对于所有1 ≤ i ≤ n,有ai ≠ bi。现在没有给出数组a,而是给出n, m和b0,要求计算有多少种不同的整数数组a1, ..., an满足以下条件: 1. 1 ≤ ai ≤ m; 2. 可以生成至少一个非负连续数组b0, ..., bn。 输入输出数据格式: 输入: - 第一行包含一个整数t(1 ≤ t ≤ 10^4),表示测试用例的数量。 - 每个测试用例包含一行,包含三个整数n, m, 和b0(1 ≤ n ≤ 2 × 10^5,1 ≤ m ≤ 2 × 10^5,0 ≤ b0 ≤ 2 × 10^5)——数组a1, ..., an的长度,a1, ..., an中最大可能的元素,以及数组b0, ..., bn的初始元素。 输出: - 对于每个测试用例,输出一行,包含一个整数:满足条件的不同数组a1, ..., an的数量,模998,244,353。 注意:由于实际答案可能非常大,只需给出模998,244,353的结果。