310977: CF1916D. Mathematical Problem
Description
The mathematicians of the 31st lyceum were given the following task:
You are given an odd number $n$, and you need to find $n$ different numbers that are squares of integers. But it's not that simple. Each number should have a length of $n$ (and should not have leading zeros), and the multiset of digits of all the numbers should be the same. For example, for $\mathtt{234}$ and $\mathtt{432}$, and $\mathtt{11223}$ and $\mathtt{32211}$, the multisets of digits are the same, but for $\mathtt{123}$ and $\mathtt{112233}$, they are not.
The mathematicians couldn't solve this problem. Can you?
InputThe first line contains an integer $t$ ($1 \leq t \leq 100$) — the number of test cases.
The following $t$ lines contain one odd integer $n$ ($1 \leq n \leq 99$) — the number of numbers to be found and their length.
It is guaranteed that the solution exists within the given constraints.
It is guaranteed that the sum of $n^2$ does not exceed $10^5$.
The numbers can be output in any order.
OutputFor each test case, you need to output $n$ numbers of length $n$ — the answer to the problem.
If there are several answers, print any of them.
ExampleInput3 1 3 5Output
1 169 196 961 16384 31684 36481 38416 43681Note
Below are the squares of the numbers that are the answers for the second test case:
$\mathtt{169}$ = $\mathtt{13}^2$
$\mathtt{196}$ = $\mathtt{14}^2$
$\mathtt{961}$ = $\mathtt{31}^2$
Below are the squares of the numbers that are the answers for the third test case:
$\mathtt{16384}$ = $\mathtt{128}^2$
$\mathtt{31684}$ = $\mathtt{178}^2$
$\mathtt{36481}$ = $\mathtt{191}^2$
$\mathtt{38416}$ = $\mathtt{196}^2$
$\mathtt{43681}$ = $\mathtt{209}^2$
Output
第31中学的数学家们被给予了以下任务:给定一个奇数n,需要找到n个不同的整数平方数。每个数的长度为n(不能有前导零),并且所有数的数字组合必须相同。例如,对于234和432,以及11223和32211,数字组合是相同的,但对于123和112233,它们是不同的。数学家们无法解决这个问题,你能解决吗?
输入输出数据格式:
输入:
第一行包含一个整数t(1≤t≤100)——测试用例的数量。
接下来的t行,每行包含一个奇数n(1≤n≤99)——要找到的数的数量和它们的长度。
保证在给定的约束条件下存在解决方案。
保证n^2的总和不超过10^5。
输出:
对于每个测试用例,你需要输出n个长度为n的数——问题的答案。
如果有多个答案,可以输出其中任何一个。题目大意: 第31中学的数学家们被给予了以下任务:给定一个奇数n,需要找到n个不同的整数平方数。每个数的长度为n(不能有前导零),并且所有数的数字组合必须相同。例如,对于234和432,以及11223和32211,数字组合是相同的,但对于123和112233,它们是不同的。数学家们无法解决这个问题,你能解决吗? 输入输出数据格式: 输入: 第一行包含一个整数t(1≤t≤100)——测试用例的数量。 接下来的t行,每行包含一个奇数n(1≤n≤99)——要找到的数的数量和它们的长度。 保证在给定的约束条件下存在解决方案。 保证n^2的总和不超过10^5。 输出: 对于每个测试用例,你需要输出n个长度为n的数——问题的答案。 如果有多个答案,可以输出其中任何一个。