310187: CF1795C. Tea Tasting

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:1 Solved:0

Description

Tea Tasting

题意翻译

### 题目简述 有 $n$ 个人和 $n$ 杯茶,第 $i$ 个人每次会喝 $b_i$ 毫升的茶。第 $i$ 杯茶有 $a_i$ 毫升。总共会喝 $n$ 轮茶,第 $j$ 轮第 $i$ 个人会尝试喝第 $i+1-j$ 杯茶。喝的量为 $\min(a_{i+1-j},b_i)$ 毫升,并且使 $a_{i+1-j}$ 减少 $\min(a_{i+1-j},b_i)$ 。问 $n$ 轮后每个人喝了多少毫升茶。 ### 输入输出 多组测试数据,对于每个测试数据,输出一行 $n$ 个数,其中第 $i$ 个数为第 $i$ 个人总共喝的茶的毫升数。

题目描述

A tea manufacturer decided to conduct a massive tea tasting. $ n $ sorts of tea will be tasted by $ n $ tasters. Both the sorts of tea and the tasters are numbered from $ 1 $ to $ n $ . The manufacturer prepared $ a_i $ milliliters of the $ i $ -th sort of tea. The $ j $ -th taster can drink $ b_j $ milliliters of tea at once. The tasting will be conducted in steps. During the first step, the $ i $ -th taster tastes the $ i $ -th sort of tea. The $ i $ -th taster drinks $ \min(a_i, b_i) $ tea (how much is available of the $ i $ -th sort and how much the $ i $ -th taster can drink). $ a_i $ also decreases by this amount. Then all tasters move to the previous sort of tea. Thus, during the second step, the $ i $ -th taster tastes the $ (i-1) $ -st sort of tea. The $ i $ -th taster drinks $ \min(a_{i-1}, b_i) $ tea. The $ 1 $ -st person ends the tasting. During the third step, the $ i $ -th taster tastes the $ (i-2) $ -nd sort of tea. The $ 2 $ -nd taster ends the tasting. This goes on until everyone ends the tasting. Take a look at the tasting process for $ n = 3 $ , $ a = [10, 20, 15] $ , $ b = [9, 8, 6] $ . In the left row, there are the current amounts of each sort of tea. In the right column, there are current amounts of tea each taster has drunk in total. The arrow tells which taster each tea goes to on the current step. The number on the arrow is the amount — minimum of how much is available of the sort of tea and how much the taster can drink. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1795C/470487c0e21724392d7014bece095c7efdff8422.png)For each taster, print how many milliliters of tea he/she will drink in total.

输入输出格式

输入格式


The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of testcases. The first line of each testcase contains a single integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the number of sorts of tea and the number of tasters. The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) — the amount of each sort of tea. The third line contains $ n $ integers $ b_1, b_2, \dots, b_n $ ( $ 1 \le b_i \le 10^9 $ ) — the amount of tea each taster can drink at once. The sum of $ n $ over all testcases doesn't exceed $ 2 \cdot 10^5 $ .

输出格式


For each testcase, print $ n $ integers — the $ i $ -th value should be equal to the total amount of tea the $ i $ -th taster will drink.

输入输出样例

输入样例 #1

4
3
10 20 15
9 8 6
1
5
7
4
13 8 5 4
3 4 2 1
3
1000000000 1000000000 1000000000
1 1 1000000000

输出样例 #1

9 9 12 
5 
3 8 6 4 
1 2 2999999997

说明

The first testcase is described in the statement. Here are the remaining amounts of each sort of tea after each step and the total amount of tea each taster has drunk: - $ a = [1, 12, 9] $ , $ \mathit{ans} = [9, 8, 6] $ - $ a = [0, 6, 9] $ , $ \mathit{ans} = [9, 9, 12] $ - $ a = [0, 6, 9] $ , $ \mathit{ans} = [9, 9, 12] $ In the second testcase, the only taster drinks $ \min(5, 7) $ milliliters of tea of the only sort. Here are the remaining amounts of each sort of tea after each step and the total amount of tea each taster has drunk for the third testcase: - $ a = [10, 4, 3, 3] $ , $ \mathit{ans} = [3, 4, 2, 1] $ ; - $ a = [6, 2, 2, 3] $ , $ \mathit{ans} = [3, 8, 4, 2] $ ; - $ a = [4, 1, 2, 3] $ , $ \mathit{ans} = [3, 8, 6, 3] $ ; - $ a = [3, 1, 2, 3] $ , $ \mathit{ans} = [3, 8, 6, 4] $ . Here are the remaining amounts of each sort of tea after each step and the total amount of tea each taster has drunk for the fourth testcase: - $ a = [999999999, 999999999, 0] $ , $ \mathit{ans} = [1, 1, 1000000000] $ ; - $ a = [999999998, 0, 0] $ , $ \mathit{ans} = [1, 2, 1999999999] $ ; - $ a = [0, 0, 0] $ , $ \mathit{ans} = [1, 2, 2999999997] $ .

Input

题意翻译

### 题目简述 有 $n$ 个人和 $n$ 杯茶,第 $i$ 个人每次会喝 $b_i$ 毫升的茶。第 $i$ 杯茶有 $a_i$ 毫升。总共会喝 $n$ 轮茶,第 $j$ 轮第 $i$ 个人会尝试喝第 $i+1-j$ 杯茶。喝的量为 $\min(a_{i+1-j},b_i)$ 毫升,并且使 $a_{i+1-j}$ 减少 $\min(a_{i+1-j},b_i)$ 。问 $n$ 轮后每个人喝了多少毫升茶。 ### 输入输出 多组测试数据,对于每个测试数据,输出一行 $n$ 个数,其中第 $i$ 个数为第 $i$ 个人总共喝的茶的毫升数。

Output

题目大意:
有 $n$ 个人和 $n$ 种茶,第 $i$ 个人每次会喝 $b_i$ 毫升的茶。第 $i$ 种茶有 $a_i$ 毫升。总共会喝 $n$ 轮茶,第 $j$ 轮第 $i$ 个人会尝试喝第 $i+1-j$ 种茶。喝的量为 $\min(a_{i+1-j}, b_i)$ 毫升,并且使 $a_{i+1-j}$ 减少 $\min(a_{i+1-j}, b_i)$。问 $n$ 轮后每个人喝了多少毫升茶。

输入输出数据格式:
多组测试数据,对于每个测试数据,输出一行 $n$ 个数,其中第 $i$ 个数为第 $i$ 个人总共喝的茶的毫升数。

输入格式:
第一行包含一个整数 $t$ ( $1 \le t \le 10^4$ ) — 测试用例的数量。

每个测试用例的第一行包含一个整数 $n$ ( $1 \le n \le 2 \cdot 10^5$ ) — 茶的种类数和品尝者的人数。

第二行包含 $n$ 个整数 $a_1, a_2, \dots, a_n$ ( $1 \le a_i \le 10^9$ ) — 每种茶的量。

第三行包含 $n$ 个整数 $b_1, b_2, \dots, b_n$ ( $1 \le b_i \le 10^9$ ) — 每个品尝者一次能喝的茶的量。

所有测试用例的 $n$ 之和不超过 $2 \cdot 10^5$。

输出格式:
对于每个测试用例,输出 $n$ 个整数 — 第 $i$ 个值表示第 $i$ 个品尝者将喝的茶的总毫升数。题目大意: 有 $n$ 个人和 $n$ 种茶,第 $i$ 个人每次会喝 $b_i$ 毫升的茶。第 $i$ 种茶有 $a_i$ 毫升。总共会喝 $n$ 轮茶,第 $j$ 轮第 $i$ 个人会尝试喝第 $i+1-j$ 种茶。喝的量为 $\min(a_{i+1-j}, b_i)$ 毫升,并且使 $a_{i+1-j}$ 减少 $\min(a_{i+1-j}, b_i)$。问 $n$ 轮后每个人喝了多少毫升茶。 输入输出数据格式: 多组测试数据,对于每个测试数据,输出一行 $n$ 个数,其中第 $i$ 个数为第 $i$ 个人总共喝的茶的毫升数。 输入格式: 第一行包含一个整数 $t$ ( $1 \le t \le 10^4$ ) — 测试用例的数量。 每个测试用例的第一行包含一个整数 $n$ ( $1 \le n \le 2 \cdot 10^5$ ) — 茶的种类数和品尝者的人数。 第二行包含 $n$ 个整数 $a_1, a_2, \dots, a_n$ ( $1 \le a_i \le 10^9$ ) — 每种茶的量。 第三行包含 $n$ 个整数 $b_1, b_2, \dots, b_n$ ( $1 \le b_i \le 10^9$ ) — 每个品尝者一次能喝的茶的量。 所有测试用例的 $n$ 之和不超过 $2 \cdot 10^5$。 输出格式: 对于每个测试用例,输出 $n$ 个整数 — 第 $i$ 个值表示第 $i$ 个品尝者将喝的茶的总毫升数。

加入题单

上一题 下一题 算法标签: