308904: CF1594A. Consecutive Sum Riddle
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Consecutive Sum Riddle
题意翻译
给定一个整数 $n$,请你找出一个区间 $[l,r]$,使得在该区间里面所有的整数的和为 $n$,并且 $-10^{18}\leqslant l,r\leqslant 10^{18}$。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 10^4$。 - $1\leqslant n\leqslant 10^{18}$。 Translated by Eason_AC 2021.10.9题目描述
Theofanis has a riddle for you and if you manage to solve it, he will give you a Cypriot snack halloumi for free (Cypriot cheese). You are given an integer $ n $ . You need to find two integers $ l $ and $ r $ such that $ -10^{18} \le l < r \le 10^{18} $ and $ l + (l + 1) + \ldots + (r - 1) + r = n $ .输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The first and only line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^{18} $ ).
输出格式
For each test case, print the two integers $ l $ and $ r $ such that $ -10^{18} \le l < r \le 10^{18} $ and $ l + (l + 1) + \ldots + (r - 1) + r = n $ . It can be proven that an answer always exists. If there are multiple answers, print any.
输入输出样例
输入样例 #1
7
1
2
3
6
100
25
3000000000000
输出样例 #1
0 1
-1 2
1 2
1 3
18 22
-2 7
999999999999 1000000000001