308904: CF1594A. Consecutive Sum Riddle

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Consecutive Sum Riddle

题意翻译

给定一个整数 $n$,请你找出一个区间 $[l,r]$,使得在该区间里面所有的整数的和为 $n$,并且 $-10^{18}\leqslant l,r\leqslant 10^{18}$。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 10^4$。 - $1\leqslant n\leqslant 10^{18}$。 Translated by Eason_AC 2021.10.9

题目描述

Theofanis has a riddle for you and if you manage to solve it, he will give you a Cypriot snack halloumi for free (Cypriot cheese). You are given an integer $ n $ . You need to find two integers $ l $ and $ r $ such that $ -10^{18} \le l < r \le 10^{18} $ and $ l + (l + 1) + \ldots + (r - 1) + r = n $ .

输入输出格式

输入格式


The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The first and only line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^{18} $ ).

输出格式


For each test case, print the two integers $ l $ and $ r $ such that $ -10^{18} \le l < r \le 10^{18} $ and $ l + (l + 1) + \ldots + (r - 1) + r = n $ . It can be proven that an answer always exists. If there are multiple answers, print any.

输入输出样例

输入样例 #1

7
1
2
3
6
100
25
3000000000000

输出样例 #1

0 1
-1 2 
1 2 
1 3 
18 22
-2 7
999999999999 1000000000001

说明

In the first test case, $ 0 + 1 = 1 $ . In the second test case, $ (-1) + 0 + 1 + 2 = 2 $ . In the fourth test case, $ 1 + 2 + 3 = 6 $ . In the fifth test case, $ 18 + 19 + 20 + 21 + 22 = 100 $ . In the sixth test case, $ (-2) + (-1) + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 = 25 $ .

Input

题意翻译

给定一个整数 $n$,请你找出一个区间 $[l,r]$,使得在该区间里面所有的整数的和为 $n$,并且 $-10^{18}\leqslant l,r\leqslant 10^{18}$。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 10^4$。 - $1\leqslant n\leqslant 10^{18}$。 Translated by Eason_AC 2021.10.9

加入题单

上一题 下一题 算法标签: