308637: CF1550F. Jumping Around

Memory Limit:256 MB Time Limit:5 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Jumping Around

题意翻译

- 数轴上顺次有 $n$ 个点 $a_1 < a_2 < \cdots < a_n$。 - 有一只小青蛙,初始时在 $a_s$ 处。小青蛙有两个参数:步长 $d$ 和灵活程度 $k$。其中,步长 $d$ 是确定的,而灵活程度 $k$ 是可以调整的。 - 小青蛙可以从某个点跳到另一个点。但这是有要求的:小青蛙能从 $a_i$ 跳到 $a_j$,当且仅当 $d-k\leq |a_i-a_j|\leq d+k$。 - 给定 $a_1,...,a_n$ 和 $d$。你需要回答 $q$ 次询问,每次询问给定一个灵活程度 $k$ 和一个下标 $i$,你需要回答:此时的小青蛙能否跳到 $a_i$? - 保证 $1\leq n,q\leq 2\times 10^5$,$1\leq s,i\leq n$,$1\leq a_i,d,k\leq 10^6$,$a_1 < a_2 < \cdots < a_n$。

题目描述

There is an infinite pond that can be represented with a number line. There are $ n $ rocks in the pond, numbered from $ 1 $ to $ n $ . The $ i $ -th rock is located at an integer coordinate $ a_i $ . The coordinates of the rocks are pairwise distinct. The rocks are numbered in the increasing order of the coordinate, so $ a_1 < a_2 < \dots < a_n $ . A robot frog sits on the rock number $ s $ . The frog is programmable. It has a base jumping distance parameter $ d $ . There also is a setting for the jumping distance range. If the jumping distance range is set to some integer $ k $ , then the frog can jump from some rock to any rock at a distance from $ d - k $ to $ d + k $ inclusive in any direction. The distance between two rocks is an absolute difference between their coordinates. You are assigned a task to implement a feature for the frog. Given two integers $ i $ and $ k $ determine if the frog can reach a rock number $ i $ from a rock number $ s $ performing a sequence of jumps with the jumping distance range set to $ k $ . The sequence can be arbitrarily long or empty. You will be given $ q $ testcases for that feature, the $ j $ -th testcase consists of two integers $ i $ and $ k $ . Print "Yes" if the $ i $ -th rock is reachable and "No" otherwise. You can output "YES" and "NO" in any case (for example, strings "yEs", "yes", "Yes" and 'YES"' will be recognized as a positive answer).

输入输出格式

输入格式


The first line contains four integers $ n $ , $ q $ , $ s $ and $ d $ ( $ 1 \le n, q \le 2 \cdot 10^5 $ ; $ 1 \le s \le n $ ; $ 1 \le d \le 10^6 $ ) — the number of rocks, the number of testcases, the starting rock and the base jumping distance parameter. The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^6 $ ) — the coordinates of the rocks. The coordinates of the rocks are pairwise distinct. The rocks are numbered in the increasing order of distance from the land, so $ a_1 < a_2 < \dots < a_n $ . Each of the next $ q $ lines contains two integers $ i $ and $ k $ ( $ 1 \le i \le n $ ; $ 1 \le k \le 10^6 $ ) — the parameters to the testcase.

输出格式


For each of the testcases print an answer. If there is a sequence of jumps from a rock number $ s $ to a rock number $ i $ with the jumping distance range set to $ k $ , then print "Yes". Otherwise, print "No".

输入输出样例

输入样例 #1

7 4 4 5
1 5 10 13 20 22 28
4 1
7 2
7 3
3 2

输出样例 #1

Yes
No
Yes
Yes

输入样例 #2

10 8 6 11
1 2 4 7 8 9 11 13 19 20
2 13
5 8
8 1
6 15
1 15
2 7
7 6
8 9

输出样例 #2

Yes
Yes
No
Yes
Yes
Yes
Yes
Yes

输入样例 #3

6 9 6 6
1 2 4 9 18 19
2 17
1 18
5 4
2 11
5 17
6 8
4 3
3 3
6 6

输出样例 #3

Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes

输入样例 #4

4 1 1 10
1 8 10 19
2 1

输出样例 #4

Yes

说明

Explanation of the first example: In the first testcase the destination rock is the same as the starting rock, thus no jumps are required to reach it. In the second testcase the frog can jump any distance in the range $ [5 - 2; 5 + 2] $ . Thus, it can reach rock number $ 5 $ (by jumping $ 7 $ to the right) and rock number $ 3 $ (by jumping $ 3 $ to the left). From rock number $ 3 $ it can reach rock number $ 2 $ (by jumping $ 5 $ to the left). From rock number $ 2 $ it can reach rock number $ 1 $ (by jumping $ 4 $ to the left). However, there is no way to reach rock number $ 7 $ . In the third testcase the frog can jump any distance in the range $ [5 - 3; 5 + 3] $ . Thus, it can reach rock number $ 7 $ by jumping to rock $ 5 $ first and to $ 7 $ afterwards. The fourth testcase is shown in the explanation for the second testcase.

Input

题意翻译

- 数轴上顺次有 $n$ 个点 $a_1 < a_2 < \cdots < a_n$。 - 有一只小青蛙,初始时在 $a_s$ 处。小青蛙有两个参数:步长 $d$ 和灵活程度 $k$。其中,步长 $d$ 是确定的,而灵活程度 $k$ 是可以调整的。 - 小青蛙可以从某个点跳到另一个点。但这是有要求的:小青蛙能从 $a_i$ 跳到 $a_j$,当且仅当 $d-k\leq |a_i-a_j|\leq d+k$。 - 给定 $a_1,...,a_n$ 和 $d$。你需要回答 $q$ 次询问,每次询问给定一个灵活程度 $k$ 和一个下标 $i$,你需要回答:此时的小青蛙能否跳到 $a_i$? - 保证 $1\leq n,q\leq 2\times 10^5$,$1\leq s,i\leq n$,$1\leq a_i,d,k\leq 10^6$,$a_1 < a_2 < \cdots < a_n$。

加入题单

上一题 下一题 算法标签: