306357: CF1184C2. Heidi and the Turing Test (Medium)
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Heidi and the Turing Test (Medium)
题意翻译
【问题描述】 定义一个二维球为,以一个点为球心,离球心的曼哈顿距离小于等于半径r的所有点的集合。点(x0,y0)与点(x1,y1)曼哈顿距离为|x0-x1|+|y0-y1|。给定n个点,和r输出二维球覆盖的最多点数。 【输入格式】 输入的第一行包含n,r 接下来n行每行两个整数x,y表示点的坐标 【输出格式】 输出的第一行包含一个数表示最多点数题目描述
The Cybermen solved that first test much quicker than the Daleks. Luckily for us, the Daleks were angry (shocking!) and they destroyed some of the Cybermen. After the fighting stopped, Heidi gave them another task to waste their time on. There are $ n $ points on a plane. Given a radius $ r $ , find the maximum number of points that can be covered by an $ L^1 $ -ball with radius $ r $ . An $ L^1 $ -ball with radius $ r $ and center $ (x_0, y_0) $ in a 2D-plane is defined as the set of points $ (x, y) $ such that the Manhattan distance between $ (x_0, y_0) $ and $ (x, y) $ is at most $ r $ . Manhattan distance between $ (x_0, y_0) $ and $ (x, y) $ is defined as $ |x - x_0| + |y - y_0| $ .输入输出格式
输入格式
The first line contains two integers $ n, r $ ( $ 1 \le n \le 300\,000, 1 \le r \le 10^6 $ ), the number of points and the radius of the ball, respectively. Each of the next $ n $ lines contains integers $ x_i, y_i $ ( $ -10^6 \leq x_i, y_i \leq 10^6 $ ), describing the coordinates of the $ i $ -th point. It is guaranteed, that all points are distinct.
输出格式
Print one integer — the maximum number points that an $ L^1 $ -ball with radius $ r $ can cover.
输入输出样例
输入样例 #1
5 1
1 1
1 -1
-1 1
-1 -1
2 0
输出样例 #1
3
输入样例 #2
5 2
1 1
1 -1
-1 1
-1 -1
2 0
输出样例 #2
5