304795: CF914B. Conan and Agasa play a Card Game

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Conan and Agasa play a Card Game

题意翻译

题目简要描述 有 $n$ 张卡牌,第 $i$ 张上写着 $a_i$。Conan 和 Agasa 轮流操作,Conan 先手。每回合中,玩家选择一张卡牌,然后移除它本身和所有点数严格小于它的卡牌。如果玩家需要操作时已经没有卡牌了,他就输了。 假设双方玩家决顶聪明,请判断谁会赢。 输入格式 第一行输入一个整数 $n(1\le n\le 10^5)$。 第二行输入 $n$ 个整数,表示 $a_1,a_2,\dots a_n(1\le a_i\le 10^5)$。 输出格式 输出赢家的名字(没有引号)

题目描述

Edogawa Conan got tired of solving cases, and invited his friend, Professor Agasa, over. They decided to play a game of cards. Conan has $ n $ cards, and the $ i $ -th card has a number $ a_{i} $ written on it. They take turns playing, starting with Conan. In each turn, the player chooses a card and removes it. Also, he removes all cards having a number strictly lesser than the number on the chosen card. Formally, if the player chooses the $ i $ -th card, he removes that card and removes the $ j $ -th card for all $ j $ such that $ a_{j}<a_{i} $ . A player loses if he cannot make a move on his turn, that is, he loses if there are no cards left. Predict the outcome of the game, assuming both players play optimally.

输入输出格式

输入格式


The first line contains an integer $ n $ ( $ 1<=n<=10^{5} $ ) — the number of cards Conan has. The next line contains $ n $ integers $ a_{1},a_{2},...,a_{n} $ ( $ 1<=a_{i}<=10^{5} $ ), where $ a_{i} $ is the number on the $ i $ -th card.

输出格式


If Conan wins, print "Conan" (without quotes), otherwise print "Agasa" (without quotes).

输入输出样例

输入样例 #1

3
4 5 7

输出样例 #1

Conan

输入样例 #2

2
1 1

输出样例 #2

Agasa

说明

In the first example, Conan can just choose the card having number $ 7 $ on it and hence remove all the cards. After that, there are no cards left on Agasa's turn. In the second example, no matter which card Conan chooses, there will be one one card left, which Agasa can choose. After that, there are no cards left when it becomes Conan's turn again.

Input

题意翻译

题目简要描述 有 $n$ 张卡牌,第 $i$ 张上写着 $a_i$。Conan 和 Agasa 轮流操作,Conan 先手。每回合中,玩家选择一张卡牌,然后移除它本身和所有点数严格小于它的卡牌。如果玩家需要操作时已经没有卡牌了,他就输了。 假设双方玩家决顶聪明,请判断谁会赢。 输入格式 第一行输入一个整数 $n(1\le n\le 10^5)$。 第二行输入 $n$ 个整数,表示 $a_1,a_2,\dots a_n(1\le a_i\le 10^5)$。 输出格式 输出赢家的名字(没有引号)

加入题单

上一题 下一题 算法标签: