303128: CF609E. Minimum spanning tree for each edge

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Minimum spanning tree for each edge

题意翻译

# Minimum spanning tree for each edge ## 题面翻译 ### 题目描述 给你 $n$ 个点,$m$ 条边,如果对于一个最小生成树中要求必须包括第 $i(1 \le i \le m)$ 条边,那么最小生成树的权值总和最小是多少。 ### 输入格式 第一行有两个整数 $n$ 和 $m$。 接下来 $m$ 行,每行有三个整数 $u$,$v$ 和 $w$ 表示一条权值为 $w$ 的边连接 $u$ 和 $v$。 ### 输出格式 总共 $m$ 行,第 $i$ 行一个整数代表包括第 $i$ 条边时的最小权值和。 ### 说明/提示 $1 \le n \le 2 \times 10^5,n-1 \le m\le 2 \times 10^5$ $1 \le u_i,v_i \le n,u_i \neq v_i,1 \le w_i \le 10^9$ ## 题目描述 Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains $ n $ vertices and $ m $ edges. For each edge $ (u,v) $ find the minimal possible weight of the spanning tree that contains the edge $ (u,v) $ . The weight of the spanning tree is the sum of weights of all edges included in spanning tree. ## 输入格式 First line contains two integers $ n $ and $ m $ ( $ 1<=n<=2·10^{5},n-1<=m<=2·10^{5} $ ) — the number of vertices and edges in graph. Each of the next $ m $ lines contains three integers $ u_{i},v_{i},w_{i} $ ( $ 1<=u_{i},v_{i}<=n,u_{i}≠v_{i},1<=w_{i}<=10^{9} $ ) — the endpoints of the $ i $ -th edge and its weight. ## 输出格式 Print $ m $ lines. $ i $ -th line should contain the minimal possible weight of the spanning tree that contains $ i $ -th edge. The edges are numbered from $ 1 $ to $ m $ in order of their appearing in input.

题目描述

Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains $ n $ vertices and $ m $ edges. For each edge $ (u,v) $ find the minimal possible weight of the spanning tree that contains the edge $ (u,v) $ . The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

输入输出格式

输入格式


First line contains two integers $ n $ and $ m $ ( $ 1<=n<=2·10^{5},n-1<=m<=2·10^{5} $ ) — the number of vertices and edges in graph. Each of the next $ m $ lines contains three integers $ u_{i},v_{i},w_{i} $ ( $ 1<=u_{i},v_{i}<=n,u_{i}≠v_{i},1<=w_{i}<=10^{9} $ ) — the endpoints of the $ i $ -th edge and its weight.

输出格式


Print $ m $ lines. $ i $ -th line should contain the minimal possible weight of the spanning tree that contains $ i $ -th edge. The edges are numbered from $ 1 $ to $ m $ in order of their appearing in input.

输入输出样例

输入样例 #1

5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4

输出样例 #1

9
8
11
8
8
8
9

Input

题意翻译

# Minimum spanning tree for each edge ## 题面翻译 ### 题目描述 给你 $n$ 个点,$m$ 条边,如果对于一个最小生成树中要求必须包括第 $i(1 \le i \le m)$ 条边,那么最小生成树的权值总和最小是多少。 ### 输入格式 第一行有两个整数 $n$ 和 $m$。 接下来 $m$ 行,每行有三个整数 $u$,$v$ 和 $w$ 表示一条权值为 $w$ 的边连接 $u$ 和 $v$。 ### 输出格式 总共 $m$ 行,第 $i$ 行一个整数代表包括第 $i$ 条边时的最小权值和。 ### 说明/提示 $1 \le n \le 2 \times 10^5,n-1 \le m\le 2 \times 10^5$ $1 \le u_i,v_i \le n,u_i \neq v_i,1 \le w_i \le 10^9$ ## 题目描述 Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains $ n $ vertices and $ m $ edges. For each edge $ (u,v) $ find the minimal possible weight of the spanning tree that contains the edge $ (u,v) $ . The weight of the spanning tree is the sum of weights of all edges included in spanning tree. ## 输入格式 First line contains two integers $ n $ and $ m $ ( $ 1<=n<=2·10^{5},n-1<=m<=2·10^{5} $ ) — the number of vertices and edges in graph. Each of the next $ m $ lines contains three integers $ u_{i},v_{i},w_{i} $ ( $ 1<=u_{i},v_{i}<=n,u_{i}≠v_{i},1<=w_{i}<=10^{9} $ ) — the endpoints of the $ i $ -th edge and its weight. ## 输出格式 Print $ m $ lines. $ i $ -th line should contain the minimal possible weight of the spanning tree that contains $ i $ -th edge. The edges are numbered from $ 1 $ to $ m $ in order of their appearing in input.

加入题单

上一题 下一题 算法标签: