201405: [AtCoder]ARC140 F - ABS Permutation (Count ver.)
Memory Limit:1024 MB
Time Limit:8 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $900$ points
Problem Statement
Find the number of permutations $P=(P_1,P_2,\dots,P_N)$ of $(1,2,\dots,N)$ that satisfy the following, modulo $998244353$, for each $K=0,1,2,\dots,N-1$.
- There are exactly $K$ integers $i$ such that $1 \le i \le N-1$ and $|P_i - P_{i+1}|=M$.
Constraints
- $2 \le N \le 250000$
- $1 \le M \le N-1$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$
Output
Print the number of permutations that satisfy the condition, modulo $998244353$, for each $K=0,1,2,\dots,N-1$.
Sample Input 1
3 1
Sample Output 1
0 4 2
- For $K=0$, the condition is satisfied by no permutations $P$.
- For $K=1$, the condition is satisfied by four permutations $P$: $(1,3,2),(2,1,3),(2,3,1),(3,1,2)$.
- For $K=2$, the condition is satisfied by two permutations $P$: $(1,2,3),(3,2,1)$.
Sample Input 2
4 3
Sample Output 2
12 12 0 0
Sample Input 3
10 5
Sample Output 3
1263360 1401600 710400 211200 38400 3840 0 0 0 0