201405: [AtCoder]ARC140 F - ABS Permutation (Count ver.)

Memory Limit:1024 MB Time Limit:8 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $900$ points

Problem Statement

Find the number of permutations $P=(P_1,P_2,\dots,P_N)$ of $(1,2,\dots,N)$ that satisfy the following, modulo $998244353$, for each $K=0,1,2,\dots,N-1$.

  • There are exactly $K$ integers $i$ such that $1 \le i \le N-1$ and $|P_i - P_{i+1}|=M$.

Constraints

  • $2 \le N \le 250000$
  • $1 \le M \le N-1$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$

Output

Print the number of permutations that satisfy the condition, modulo $998244353$, for each $K=0,1,2,\dots,N-1$.


Sample Input 1

3 1

Sample Output 1

0 4 2 
  • For $K=0$, the condition is satisfied by no permutations $P$.
  • For $K=1$, the condition is satisfied by four permutations $P$: $(1,3,2),(2,1,3),(2,3,1),(3,1,2)$.
  • For $K=2$, the condition is satisfied by two permutations $P$: $(1,2,3),(3,2,1)$.

Sample Input 2

4 3

Sample Output 2

12 12 0 0 

Sample Input 3

10 5

Sample Output 3

1263360 1401600 710400 211200 38400 3840 0 0 0 0 

Input

加入题单

上一题 下一题 算法标签: