201404: [AtCoder]ARC140 E - Not Equal Rectangle

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $800$ points

Problem Statement

We have a grid with $N \times M$ squares. You will fill every square with an integer between $1$ and $25$ (inclusive). Let $a_{i,j}$ be the integer to be written in the square at the $i$-th row from the top and $j$-th column from the left.

Find a way to fill the squares to satisfy the condition below. It can be proved that, under the Constraints of this problem, such a way always exists.

  • For any integers $1\leq x_1 < x_2\leq N,1\leq y_1 < y_2 \leq M$, it must not be the case that $a_{x_1,y_1},a_{x_1,y_2},a_{x_2,y_1},a_{x_2,y_2}$ are all equal.

Constraints

  • $2 \leq N , M \leq 500$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$ 

Output

Print one way to fill the squares to satisfy the condition, in the format below:

$a_{1,1}$ $a_{1,2}$ $\ldots$ $a_{1,M}$
$a_{2,1}$ $a_{2,2}$ $\ldots$ $a_{2,M}$
$\vdots$
$a_{N,1}$ $a_{N,2}$ $\ldots$ $a_{N,M}$

If there are multiple solutions, printing any of them will be accepted.


Sample Input 1

2 3

Sample Output 1

1 1 1
1 2 3

$(x_1,x_2,y_1,y_2)$ can be one of $(1,2,1,2),(1,2,2,3),(1,2,1,3)$.

For any of them, the numbers written in the squares are not all equal, so this output satisfies the condition.

Input

题意翻译

请构造一个大小为 $n\times m$ 的矩阵 $a$,满足以下条件: 1. $1\leq a_{i,j} \leq 25$。 2. 对于所有的 $x1\neq x2,y1 \neq y2$,不存在 $a_{x1,y1}=a_{x2,y1}=a_{x1,y2}=a_{x2,y2}$。

加入题单

上一题 下一题 算法标签: