102707: [AtCoder]ABC270 Ex - add 1
Description
Score : $600$ points
Problem Statement
You are given a tuple of $N$ non-negative integers $A=(A_1,A_2,\ldots,A_N)$ such that $A_1=0$ and $A_N>0$.
Takahashi has $N$ counters. Initially, the values of all counters are $0$.
He will repeat the following operation until, for every $1\leq i\leq N$, the value of the $i$-th counter is at least $A_i$.
Choose one of the $N$ counters uniformly at random and set its value to $0$. (Each choice is independent of others.)
Increase the values of the other counters by $1$.
Print the expected value of the number of times Takahashi repeats the operation, modulo $998244353$ (see Notes).
Notes
It can be proved that the sought expected value is always finite and rational. Additionally, under the Constraints of this problem, when that value is represented as $\frac{P}{Q}$ using two coprime integers $P$ and $Q$, one can prove that there is a unique integer $R$ such that $R \times Q \equiv P\pmod{998244353}$ and $0 \leq R \lt 998244353$. Find this $R$.
Constraints
- $2\leq N\leq 2\times 10^5$
- $0=A_1\leq A_2\leq \cdots \leq A_N\leq 10^{18}$
- $A_N>0$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $\ldots$ $A_N$
Output
Print the expected value of the number of times Takahashi repeats the operation, modulo $998244353$.
Sample Input 1
2 0 2
Sample Output 1
6
Let $C_i$ denote the value of the $i$-th counter.
Here is one possible progression of the process.
- Set the value of the $1$-st counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(0,1)$.
- Set the value of the $2$-nd counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(1,0)$.
- Set the value of the $1$-st counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(0,1)$.
- Set the value of the $1$-st counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(0,2)$.
In this case, the operation is performed four times.
The probabilities that the process ends after exactly $1,2,3,4,5,\ldots$ operation(s) are $0,\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{3}{32},\ldots$, respectively, so the sought expected value is $2\times\frac{1}{4}+3\times\frac{1}{8}+4\times\frac{1}{8}+5\times\frac{3}{32}+\dots=6$. Thus, $6$ should be printed.
Sample Input 2
5 0 1 3 10 1000000000000000000
Sample Output 2
874839568
Input
题意翻译
给定一个由非负整数组成的 $N$ 元组 $A=(A_1,A_2,\cdots,A_n)$,其中 $A_1=0$ 且 $A_N>0$。 有 $N$ 个初始值为 $0$ 的计数器。 需要进行下述操作,直到对于每个 $i$,第 $i$ 个计数器均至少为 $A_i$: > 均匀随机地选定某一个计数器,并将该计数器归零。其他的计数器增加 $1$。 输出操作次数的期望对 $998244353$ 取模的结果。Output
得分:$600$分
问题描述
你得到了一个长度为$N$的非负整数元组$A=(A_1,A_2,\ldots,A_N)$,满足$A_1=0$和$A_N>0$。
Takahashi有$N$个计数器。最初,所有计数器的值都是$0$。
他将重复以下操作,直到对于每个$1\leq i\leq N$,第$i$个计数器的值至少为$A_i$。
以等概率选择$N$个计数器中的一个,并将其值设置为$0$。 (每次选择都是相互独立的。)
将其他计数器的值增加$1$。
输出Takahashi重复操作的期望次数,对$998244353$取模(见注释)。
注释
可以证明所求的期望值总是有限的且为有理数。此外,在本问题的约束条件下,当该值表示为$\frac{P}{Q}$,其中两个互素的整数$P$和$Q$表示,可以证明存在一个唯一的整数$R$,使得$R \times Q \equiv P\pmod{998244353}$且$0 \leq R \lt 998244353$。找到这个$R$。
约束
- $2\leq N\leq 2\times 10^5$
- $0=A_1\leq A_2\leq \cdots \leq A_N\leq 10^{18}$
- $A_N>0$
- 输入中的所有值都是整数。
输入
输入通过标准输入给出,格式如下:
$N$ $A_1$ $A_2$ $\ldots$ $A_N$
输出
输出Takahashi重复操作的期望次数,对$998244353$取模。
样例输入1
2 0 2
样例输出1
6
令$C_i$表示第$i$个计数器的值。
以下是过程的一种可能的进程。
- 将第$1$个计数器的值设置为$0$,然后将其他计数器的值增加$1$。现在,$(C_1,C_2)=(0,1)$。
- 将第$2$个计数器的值设置为$0$,然后将其他计数器的值增加$1$。现在,$(C_1,C_2)=(1,0)$。
- 将第$1$个计数器的值设置为$0$,然后将其他计数器的值增加$1$。现在,$(C_1,C_2)=(0,1)$。
- 将第$1$个计数器的值设置为$0$,然后将其他计数器的值增加$1$。现在,$(C_1,C_2)=(0,2)$。
在这种情况下,操作执行了四次。
过程在恰好执行$1,2,3,4,5,\ldots$次操作后结束的概率分别为$0,\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{3}{32},\ldots$,因此所求的期望值为$2\times\frac{1}{4}+3\times\frac{1}{8}+4\times\frac{1}{8}+5\times\frac{3}{32}+\dots=6$。 因此,应输出$6$。
样例输入2
5 0 1 3 10 1000000000000000000
样例输出2
874839568