102635: [AtCoder]ABC263 F - Tournament
Description
Score : $500$ points
Problem Statement
$2^N$ people, numbered $1$ to $2^N$, will participate in a rock-paper-scissors tournament.
The tournament proceeds as follows:
- The participants are arranged in a row in the order Person $1$, Person $2$, $\ldots$, Person $2^N$ from left to right.
- Let $2M$ be the current length of the row. For each $i\ (1\leq i \leq M)$, the $(2i-1)$-th and $(2i)$-th persons from the left play a game against each other. Then, the $M$ losers are removed from the row. This process is repeated $N$ times.
Here, if Person $i$ wins exactly $j$ games, they receive $C_{i,j}$ yen (Japanese currency). A person winning zero games receives nothing. Find the maximum possible total amount of money received by the $2^N$ people if the results of all games can be manipulated freely.
Constraints
- $1 \leq N \leq 16$
- $1 \leq C_{i,j} \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $C_{1,1}$ $C_{1,2}$ $\ldots$ $C_{1,N}$ $C_{2,1}$ $C_{2,2}$ $\ldots$ $C_{2,N}$ $\vdots$ $C_{2^N,1}$ $C_{2^N,2}$ $\ldots$ $C_{2^N,N}$
Output
Print the answer.
Sample Input 1
2 2 5 6 5 2 1 7 9
Sample Output 1
15
The initial row of the people is $(1,2,3,4)$.
If Person $2$ wins the game against Person $1$, and Person $4$ wins the game against Person $3$, the row becomes $(2,4)$.
Then, if Person $4$ wins the game against Person $2$, the row becomes $(4)$, and the tournament ends.
Here, Person $2$ wins exactly $1$ game, and Person $4$ wins exactly $2$ games, so they receive $0+6+0+9=15$ yen in total, which is the maximum possible sum.
Sample Input 2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Output 2
4
Input
题意翻译
给定 $ n $,存在 $ 2^n $ 个人站成一排进行比赛,比赛赛制按照类满二叉树进行,即每 $ 2i $ 和 $ 2i - 1 $ 两人进行比赛,胜利者进入下一层继续按照相同赛制比赛,直至最终剩余一人。若第 $ i $ 人获得了 $ j $ 场比赛的胜利,那么将获得 $ C_{i, j} $ 的奖金。你可以任意安排每场比赛的输赢,以最大化所有人的奖金和,求最大值。Output
问题描述
编号为1到2^N的2^N个人将参加一个猜拳比赛。
比赛进行如下:
- 参赛者按照从左到右的顺序排列为Person 1, Person 2, ..., Person 2^N。
- 当前行的长度为2M。对于每个i\ (1≤i≤M)$,从左数第(2i-1)$和第(2i)$个人进行比赛。然后,将M个输家从行中移除。这个过程重复N次。
如果Person $i$恰好赢了j场比赛,他们将获得$C_{i,j}$日元(日本货币)。赢得零场比赛的人将一无所获。如果所有比赛的结果都可以自由操纵,请找出这2^N人获得的最大可能总金额。
限制条件
- $1≤N≤16$
- $1≤C_{i,j}≤10^9$
- 输入中的所有值都是整数。
输入
输入格式如下:
$N$ $C_{1,1}$ $C_{1,2}$ $\ldots$ $C_{1,N}$ $C_{2,1}$ $C_{2,2}$ $\ldots$ $C_{2,N}$ $\vdots$ $C_{2^N,1}$ $C_{2^N,2}$ $\ldots$ $C_{2^N,N}$
输出
打印答案。
样例输入1
2 2 5 6 5 2 1 7 9
样例输出1
15
人们的初始行是$(1,2,3,4)$。
如果Person $2$赢得了与Person $1$的比赛,Person $4$赢得了与Person $3$的比赛,行变为$(2,4)$。
然后,如果Person $4$赢得了与Person $2$的比赛,行变为$(4)$,比赛结束。
这里,Person $2$恰好赢了1场比赛,Person $4$恰好赢了2场比赛,因此他们总共获得$0+6+0+9=15$日元,这是最大的可能和。
样例输入2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
样例输出2
4