100511: [AtCoder]ABC051 B - Sum of Three Integers

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $200$ points

Problem Statement

You are given two integers $K$ and $S$.
Three variable $X, Y$ and $Z$ takes integer values satisfying $0≤X,Y,Z≤K$.
How many different assignments of values to $X, Y$ and $Z$ are there such that $X + Y + Z = S$?

Constraints

  • $2≤K≤2500$
  • $0≤S≤3K$
  • $K$ and $S$ are integers.

Input

The input is given from Standard Input in the following format:

$K$ $S$

Output

Print the number of the triples of $X, Y$ and $Z$ that satisfy the condition.


Sample Input 1

2 2

Sample Output 1

6

There are six triples of $X, Y$ and $Z$ that satisfy the condition:

  • $X = 0, Y = 0, Z = 2$
  • $X = 0, Y = 2, Z = 0$
  • $X = 2, Y = 0, Z = 0$
  • $X = 0, Y = 1, Z = 1$
  • $X = 1, Y = 0, Z = 1$
  • $X = 1, Y = 1, Z = 0$

Sample Input 2

5 15

Sample Output 2

1

The maximum value of $X + Y + Z$ is $15$, achieved by one triple of $X, Y$ and $Z$.

Input

题意翻译

# 题目描述 有两个整数 $K$ , $S$ 求有几种方案使得三个非负整数 $X$ , $Y$ , $Z$ 之和= $S$ 并且均 $\leq K$ # 输入格式 两个正整数 $K$ , $S$ , 见题目描述。 # 输出格式 一个整数,表示方案数

加入题单

上一题 下一题 算法标签: