406864: GYM102586 D Xor Sum
Description
Determine whether there exists a sequence of $$$N$$$ nonnegative integers $$$a_1,a_2,\cdots,a_N$$$ that satisfies all of the following conditions, and if it exists, find the minimum possible value of the maximum of the array.
- $$$a_1+a_2+\cdots+a_N=S$$$
- $$$a_1 \oplus a_2 \oplus \cdots \oplus a_N=X$$$ (Here $$$\oplus$$$ denotes bitwise xor operation)
Note that there are $$$T$$$ tests in one input file.
InputInput is given from Standard Input in the following format:
$$$T$$$
$$$N_1$$$ $$$S_1$$$ $$$X_1$$$
$$$N_2$$$ $$$S_2$$$ $$$X_2$$$
$$$\vdots$$$
$$$N_T$$$ $$$S_T$$$ $$$X_T$$$
Here, $$$N_i,S_i,X_i$$$ represent values of $$$N,S,X$$$ for the $$$i$$$-th test, respectively.
Constraints:
- $$$1 \leq T \leq 500$$$
- $$$1 \leq N \leq 2^{60}-1$$$
- $$$0 \leq S \leq 2^{60}-1$$$
- $$$0 \leq X \leq 2^{60}-1$$$
- All values in input are integers.
Print $$$T$$$ lines. In the $$$i$$$-th line, print $$$-1$$$ if there doesn't exist an array with the mentioned property in the $$$i$$$-th test, and print the minimum possible value of the maximum of the array if it exists.
ExampleInput6 3 9 3 4 8 0 6 19 1 1 15 15 2 6 5 5 4 3Output
3 2 4 15 -1 -1Note
The following is a solution for each test:
- (3,3,3)
- (2,2,2,2)
- (2,3,3,3,4,4)
- (15)
- Impossible
- Impossible