311251: CF1956C. Nene's Magical Matrix
Description
The magical girl Nene has an $n\times n$ matrix $a$ filled with zeroes. The $j$-th element of the $i$-th row of matrix $a$ is denoted as $a_{i, j}$.
She can perform operations of the following two types with this matrix:
- Type $1$ operation: choose an integer $i$ between $1$ and $n$ and a permutation $p_1, p_2, \ldots, p_n$ of integers from $1$ to $n$. Assign $a_{i, j}:=p_j$ for all $1 \le j \le n$ simultaneously.
- Type $2$ operation: choose an integer $i$ between $1$ and $n$ and a permutation $p_1, p_2, \ldots, p_n$ of integers from $1$ to $n$. Assign $a_{j, i}:=p_j$ for all $1 \le j \le n$ simultaneously.
Nene wants to maximize the sum of all the numbers in the matrix $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}a_{i,j}$. She asks you to find the way to perform the operations so that this sum is maximized. As she doesn't want to make too many operations, you should provide a solution with no more than $2n$ operations.
A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in arbitrary order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ appears twice in the array), and $[1,3,4]$ is also not a permutation ($n=3$ but there is $4$ in the array).
InputEach test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 500$). The description of test cases follows.
The only line of each test case contains a single integer $n$ ($1 \le n \le 500$) — the size of the matrix $a$.
It is guaranteed that the sum of $n^2$ over all test cases does not exceed $5 \cdot 10^5$.
OutputFor each test case, in the first line output two integers $s$ and $m$ ($0\leq m\leq 2n$) — the maximum sum of the numbers in the matrix and the number of operations in your solution.
In the $k$-th of the next $m$ lines output the description of the $k$-th operation:
- an integer $c$ ($c \in \{1, 2\}$) — the type of the $k$-th operation;
- an integer $i$ ($1 \le i \le n$) — the row or the column the $k$-th operation is applied to;
- a permutation $p_1, p_2, \ldots, p_n$ of integers from $1$ to $n$ — the permutation used in the $k$-th operation.
Note that you don't need to minimize the number of operations used, you only should use no more than $2n$ operations. It can be shown that the maximum possible sum can always be obtained in no more than $2n$ operations.
ExampleInput2 1 2Output
1 1 1 1 1 7 3 1 1 1 2 1 2 1 2 2 1 1 2Note
In the first test case, the maximum sum $s=1$ can be obtained in $1$ operation by setting $a_{1, 1}:=1$.
In the second test case, the maximum sum $s=7$ can be obtained in $3$ operations as follows:
It can be shown that it is impossible to make the sum of the numbers in the matrix larger than $7$.
Output
Nene有一个n×n的零矩阵a。她可以通过两种操作来修改矩阵:
1. 选择一行和一个1到n的整数排列,将该行所有元素设置为排列中的对应值。
2. 选择一列和一个1到n的整数排列,将该列所有元素设置为排列中的对应值。
目标是使得矩阵中所有数的和最大。需要找到一种操作方式,使得这个和最大,同时操作次数不超过2n。
输入数据格式:
第一行包含一个整数t,表示测试用例的数量。
接下来t行,每行包含一个整数n,表示矩阵的大小。
输出数据格式:
对于每个测试用例,第一行输出两个整数s和m,分别表示矩阵中所有数的最大和以及操作次数。
接下来m行,每行包含三个部分:
1. 一个整数c(1或2),表示操作的类型。
2. 一个整数i(1到n),表示操作的行或列。
3. 一个1到n的整数排列,表示操作中使用的排列。
请注意,不需要最小化使用的操作次数,只要不超过2n次即可。可以证明,最大可能的和总是可以在不超过2n次操作内获得。题目大意: Nene有一个n×n的零矩阵a。她可以通过两种操作来修改矩阵: 1. 选择一行和一个1到n的整数排列,将该行所有元素设置为排列中的对应值。 2. 选择一列和一个1到n的整数排列,将该列所有元素设置为排列中的对应值。 目标是使得矩阵中所有数的和最大。需要找到一种操作方式,使得这个和最大,同时操作次数不超过2n。 输入数据格式: 第一行包含一个整数t,表示测试用例的数量。 接下来t行,每行包含一个整数n,表示矩阵的大小。 输出数据格式: 对于每个测试用例,第一行输出两个整数s和m,分别表示矩阵中所有数的最大和以及操作次数。 接下来m行,每行包含三个部分: 1. 一个整数c(1或2),表示操作的类型。 2. 一个整数i(1到n),表示操作的行或列。 3. 一个1到n的整数排列,表示操作中使用的排列。 请注意,不需要最小化使用的操作次数,只要不超过2n次即可。可以证明,最大可能的和总是可以在不超过2n次操作内获得。