311163: CF1943C. Tree Compass
Description
You are given a tree with $n$ vertices numbered $1, 2, \ldots, n$. Initially, all vertices are colored white.
You can perform the following two-step operation:
- Choose a vertex $v$ ($1 \leq v \leq n$) and a distance $d$ ($0 \leq d \leq n-1$).
- For all vertices $u$ ($1 \leq u \leq n$) such that $\text{dist}^\dagger(u,v)=d$, color $u$ black.
Construct a sequence of operations to color all the nodes in the tree black using the minimum possible number of operations. It can be proven that it is always possible to do so using at most $n$ operations.
$^\dagger$ $\text{dist}(x, y)$ denotes the number of edges on the (unique) simple path between vertices $x$ and $y$ on the tree.
InputEach test contains multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 200$) — the number of test cases. The description of the test cases follows.
The first line of each test case contains a single integer $n$ ($1 \le n \le 2 \cdot 10^3$) — the number of vertices of the tree.
The following $n - 1$ lines of each test case describe the edges of the tree. The $i$-th of these lines contains two integers $u_i$ and $v_i$ ($1 \le u_i, v_i \le n$, $u_i \neq v_i$), the indices of the vertices connected by the $i$-th edge.
It is guaranteed that the given edges form a tree.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^3$.
OutputFor each test case, first output a single integer $op$ $(1 \le op \le n)$, the minimum number of operations needed to color all vertices of the tree black.
Then, output $op$ lines, each containing $2$ integers. The $i$-th line should contain the values of $v$ and $d$ chosen for the $i$-th operation ($1 \le v \le n$, $0 \le d \le n - 1$)
You must guarantee that at the end of $op$ operations, all vertices are colored black.
If there are multiple solutions, you may output any one of them.
ExampleInput4 1 2 1 2 4 1 2 1 3 1 4 7 2 7 3 2 6 4 5 7 1 6 6 7Output
1 1 0 2 1 1 2 1 2 1 1 2 1 3 6 1 7 1 2 1Note
In the first test case, there is only one possible operation, and performing it gives us a valid answer.
In the second test case, the first operation colors vertex $2$ black, and the second operation colors vertex $1$ black. It can be shown that it is impossible to color both vertices black in one operation, so the minimum number of operations needed is $2$. Another possible solution is to use the $2$ operations: $(u, r) = (1, 0)$ and $(u, r) = (2, 0)$.
In the third test case, the first operation colors vertices $2$, $3$ and $4$ black, and the second operation colors vertex $1$ black. Again, it can be shown that it is impossible to color all vertices black in $1$ operation, so the minimum number of operations needed is $2$.
In the fourth test case, the first operation colors vertices $4$, $1$ and $7$ black, the second operation colors vertices $2$, $5$ and $6$ black while the third operation colors vertices $3$ and $7$ black. Notice that it is allowed to color vertex $7$ black twice.
Thus, each node was marked at least once, with node $7$ marked twice. It can be shown that it is impossible to color all vertices black in fewer than $3$ moves.
Output
输入输出数据格式:
输入:
- 第1行:一个整数t(1≤t≤200),表示测试用例的数量。
- 每个测试用例:
- 第1行:一个整数n(1≤n≤2000),表示树的顶点数。
- 接下来n-1行:每行包含两个整数ui和vi(1≤ui,vi≤n,ui≠vi),表示树的一条边。
输出:
- 对于每个测试用例:
- 第1行:一个整数op(1≤op≤n),表示将树中所有顶点染成黑色所需的最小操作数。
- 接下来op行:每行包含两个整数,分别表示每次操作选择的顶点v和距离d(1≤v≤n,0≤d≤n-1)。
保证在op次操作结束后,所有顶点都被染成黑色。如果有多个解决方案,可以输出其中任何一个。题目大意:给定一棵有n个顶点编号为1, 2, ..., n的树,初始时所有顶点都是白色。可以执行以下两步操作:1. 选择一个顶点v(1≤v≤n)和一个距离d(0≤d≤n-1)。2. 对于所有顶点u(1≤u≤n),如果dist†(u,v)=d,则将u染成黑色。构造一个操作序列,以最少的操作次数将树中所有节点染成黑色。可以证明,总是可以在最多n次操作内完成。 输入输出数据格式: 输入: - 第1行:一个整数t(1≤t≤200),表示测试用例的数量。 - 每个测试用例: - 第1行:一个整数n(1≤n≤2000),表示树的顶点数。 - 接下来n-1行:每行包含两个整数ui和vi(1≤ui,vi≤n,ui≠vi),表示树的一条边。 输出: - 对于每个测试用例: - 第1行:一个整数op(1≤op≤n),表示将树中所有顶点染成黑色所需的最小操作数。 - 接下来op行:每行包含两个整数,分别表示每次操作选择的顶点v和距离d(1≤v≤n,0≤d≤n-1)。 保证在op次操作结束后,所有顶点都被染成黑色。如果有多个解决方案,可以输出其中任何一个。