311121: CF1937D. Pinball
Description
There is a one-dimensional grid of length $n$. The $i$-th cell of the grid contains a character $s_i$, which is either '<' or '>'.
When a pinball is placed on one of the cells, it moves according to the following rules:
- If the pinball is on the $i$-th cell and $s_i$ is '<', the pinball moves one cell to the left in the next second. If $s_i$ is '>', it moves one cell to the right.
- After the pinball has moved, the character $s_i$ is inverted (i. e. if $s_i$ used to be '<', it becomes '>', and vice versa).
- The pinball stops moving when it leaves the grid: either from the left border or from the right one.
You need to answer $n$ independent queries. In the $i$-th query, a pinball will be placed on the $i$-th cell. Note that we always place a pinball on the initial grid.
For each query, calculate how many seconds it takes the pinball to leave the grid. It can be shown that the pinball will always leave the grid within a finite number of steps.
InputEach test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 10^5$). The description of the test cases follows.
The first line of each test case contains an integer $n$ ($1 \le n \le 5 \cdot 10^5$).
The second line of each test case contains a string $s_1s_2 \ldots s_{n}$ of length $n$ consisting of characters '<' and '>'.
It is guaranteed that the sum of $n$ over all test cases does not exceed $5 \cdot 10^5$.
OutputFor each test case, for each $i$ ($1 \le i \le n$) output the answer if a pinball is initially placed on the $i$-th cell.
ExampleInput3 3 ><< 4 <<<< 6 <><<<>Output
3 6 5 1 2 3 4 1 4 7 10 8 1Note
In the first test case, the movement of the pinball for $i=1$ is shown in the following pictures. It takes the pinball $3$ seconds to leave the grid.
The movement of the pinball for $i=2$ is shown in the following pictures. It takes the pinball $6$ seconds to leave the grid.
Output
题目描述了一个一维网格,长度为 n。网格的第 i 个单元包含一个字符 s_i,该字符要么是 '<',要么是 '>'。
当弹珠放置在某个单元格上时,它根据以下规则移动:
1. 如果弹珠在第 i 个单元格上,且 s_i 是 '<',则弹珠在下一秒向左移动一个单元格;如果 s_i 是 '>',则向右移动一个单元格。
2. 弹珠移动后,字符 s_i 会翻转(即如果 s_i 曾经是 '<',它会变成 '>',反之亦然)。
3. 弹珠停止移动当它离开网格:要么从左边界,要么从右边界。
需要回答 n 个独立的查询。在第 i 个查询中,将一个弹珠放置在第 i 个单元格上。注意,我们总是在初始网格上放置弹珠。
对于每个查询,计算弹珠离开网格需要多少秒。可以证明,弹珠总是在有限步内离开网格。
输入输出数据格式:
输入:
- 每个测试包含多个测试案例。第一行包含测试案例数 t(1 ≤ t ≤ 10^5)。
- 每个测试案例的第一行包含一个整数 n(1 ≤ n ≤ 5 * 10^5)。
- 每个测试案例的第二行包含一个长度为 n 的字符串 s_1s_2...s_n,由 '<' 和 '>' 字符组成。
- 保证所有测试案例的 n 之和不超过 5 * 10^5。
输出:
- 对于每个测试案例,对于每个 i(1 ≤ i ≤ n),输出如果弹珠最初放置在第 i 个单元格上时的答案。
示例:
输入:
```
3
3
>&<>
4
<<<<
6
<><<<<>
```
输出:
```
3 6 5
1 2 3 4
1 4 7 10 8 1
```
注意:
- 在第一个测试案例中,当 i=1 时,弹珠需要 3 秒离开网格。
- 在第一个测试案例中,当 i=2 时,弹珠需要 6 秒离开网格。题目大意: 题目描述了一个一维网格,长度为 n。网格的第 i 个单元包含一个字符 s_i,该字符要么是 '<',要么是 '>'。 当弹珠放置在某个单元格上时,它根据以下规则移动: 1. 如果弹珠在第 i 个单元格上,且 s_i 是 '<',则弹珠在下一秒向左移动一个单元格;如果 s_i 是 '>',则向右移动一个单元格。 2. 弹珠移动后,字符 s_i 会翻转(即如果 s_i 曾经是 '<',它会变成 '>',反之亦然)。 3. 弹珠停止移动当它离开网格:要么从左边界,要么从右边界。 需要回答 n 个独立的查询。在第 i 个查询中,将一个弹珠放置在第 i 个单元格上。注意,我们总是在初始网格上放置弹珠。 对于每个查询,计算弹珠离开网格需要多少秒。可以证明,弹珠总是在有限步内离开网格。 输入输出数据格式: 输入: - 每个测试包含多个测试案例。第一行包含测试案例数 t(1 ≤ t ≤ 10^5)。 - 每个测试案例的第一行包含一个整数 n(1 ≤ n ≤ 5 * 10^5)。 - 每个测试案例的第二行包含一个长度为 n 的字符串 s_1s_2...s_n,由 '<' 和 '>' 字符组成。 - 保证所有测试案例的 n 之和不超过 5 * 10^5。 输出: - 对于每个测试案例,对于每个 i(1 ≤ i ≤ n),输出如果弹珠最初放置在第 i 个单元格上时的答案。 示例: 输入: ``` 3 3 >&<> 4 <<<< 6 <><<<<> ``` 输出: ``` 3 6 5 1 2 3 4 1 4 7 10 8 1 ``` 注意: - 在第一个测试案例中,当 i=1 时,弹珠需要 3 秒离开网格。 - 在第一个测试案例中,当 i=2 时,弹珠需要 6 秒离开网格。