311116: CF1936E. Yet Yet Another Permutation Problem
Description
You are given a permutation $p$ of length $n$.
Please count the number of permutations $q$ of length $n$ which satisfy the following:
- for each $1 \le i < n$, $\max(q_1,\ldots,q_i) \neq \max(p_1,\ldots,p_i)$.
Since the answer may be large, output the answer modulo $998\,244\,353$.
InputEach test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 10^4$). The description of the test cases follows.
The first line of each test case contains a single integer $n$ ($2 \le n \le 2 \cdot 10^5$).
The second line of each test case contains $n$ integers $p_1, p_2, \ldots, p_n$ ($1 \le p_i \le n$). It is guaranteed that $p$ is a permutation.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
OutputFor each test case, print a single integer — the answer modulo $998\,244\,353$.
ExampleInput6 2 2 1 3 1 2 3 3 3 1 2 4 2 4 1 3 5 3 5 1 4 2 15 6 13 2 8 7 11 1 3 9 15 4 5 12 10 14Output
1 3 2 4 18 424488915Note
In the first test case, $p = [2, 1]$. The only suitable $q$ is $[1, 2]$. Indeed, we need to satisfy the inequality $q_1 \neq p_1$. It only holds for $q = [1, 2]$.
In the second test case, $p = [1, 2, 3]$. So $q$ has to satisfy two inequalities: $q_1 \neq p_1$ and $\max(q_1, q_2) \neq \max(1, 2) = 2$. One can prove that this only holds for the following $3$ permutations:
- $q = [2, 3, 1]$: in this case $q_1 = 2 \neq 1$ and $\max(q_1, q_2) = 3 \neq 2$;
- $q = [3, 1, 2]$: in this case $q_1 = 3 \neq 1$ and $\max(q_1, q_2) = 3 \neq 2$;
- $q = [3, 2, 1]$: in this case $q_1 = 3 \neq 1$ and $\max(q_1, q_2) = 3 \neq 2$.
Output
给定一个长度为n的排列p。请计算满足以下条件的长度为n的排列q的数量:
对于每个1≤i
输入数据格式:
每个测试包含多个测试用例。第一行包含测试用例的数量t(1≤t≤10^4)。接下来是每个测试用例的描述。
每个测试用例的第一行包含一个整数n(2≤n≤2×10^5)。
每个测试用例的第二行包含n个整数p1,p2,…,pn(1≤pi≤n)。保证p是一个排列。
保证所有测试用例的n之和不超过2×10^5。
输出数据格式:
对于每个测试用例,输出一个整数——答案模998244353的结果。题目大意: 给定一个长度为n的排列p。请计算满足以下条件的长度为n的排列q的数量: 对于每个1≤i