310919: CF1909G. Pumping Lemma
Description
You are given two strings $s$, $t$ of length $n$, $m$, respectively. Both strings consist of lowercase letters of the English alphabet.
Count the triples $(x, y, z)$ of strings such that the following conditions are true:
- $s = x+y+z$ (the symbol $+$ represents the concatenation);
- $t = x+\underbrace{ y+\dots+y }_{k \text{ times}} + z$ for some integer $k$.
The first line contains two integers $n$ and $m$ ($1 \leq n < m \leq 10^7$) — the length of the strings $s$ and $t$, respectively.
The second line contains the string $s$ of length $n$, consisting of lowercase letters of the English alphabet.
The third line contains the string $t$ of length $m$, consisting of lowercase letters of the English alphabet.
OutputOutput a single integer: the number of valid triples $(x, y, z)$.
ExamplesInput4 8 abcd abcbcbcdOutput
1Input
3 5 aaa aaaaaOutput
5Input
12 16 abbababacaab abbababababacaabOutput
8Note
In the first test case, the only valid triple is $(x, y, z) = (\texttt{"a"}, \texttt{"bc"}, \texttt{"d"})$. In fact,
- $\texttt{"abcd"} = \texttt{"a"} + \texttt{"bc"} + \texttt{"d"}$;
- $\texttt{"abcbcbcd"} = \texttt{"a"} + \texttt{"bc"} + \texttt{"bc"} + \texttt{"bc"} + \texttt{"d"}$.
In the second test case, there are $5$ valid triples:
- $(x, y, z) = (\texttt{""}, \texttt{"a"}, \texttt{"aa"})$;
- $(x, y, z) = (\texttt{""}, \texttt{"aa"}, \texttt{"a"})$;
- $(x, y, z) = (\texttt{"a"}, \texttt{"a"}, \texttt{"a"})$;
- $(x, y, z) = (\texttt{"a"}, \texttt{"aa"}, \texttt{""})$;
- $(x, y, z) = (\texttt{"aa"}, \texttt{"a"}, \texttt{""})$.
In the third test case, there are $8$ valid triples:
- $(x, y, z) = (\texttt{"ab"}, \texttt{"ba"}, \texttt{"babacaab"})$;
- $(x, y, z) = (\texttt{"abb"}, \texttt{"ab"}, \texttt{"abacaab"})$;
- $(x, y, z) = (\texttt{"abba"}, \texttt{"ba"}, \texttt{"bacaab"})$;
- $(x, y, z) = (\texttt{"ab"}, \texttt{"baba"}, \texttt{"bacaab"})$;
- $(x, y, z) = (\texttt{"abbab"}, \texttt{"ab"}, \texttt{"acaab"})$;
- $(x, y, z) = (\texttt{"abb"}, \texttt{"abab"}, \texttt{"acaab"})$;
- $(x, y, z) = (\texttt{"abbaba"}, \texttt{"ba"}, \texttt{"caab"})$;
- $(x, y, z) = (\texttt{"abba"}, \texttt{"baba"}, \texttt{"caab"})$.
Output
给定两个字符串 s 和 t,长度分别为 n 和 m。字符串由小写英文字母组成。计算满足以下条件的三元组 (x, y, z) 的数量:
1. s = x + y + z (+ 表示字符串连接);
2. t = x + y + ... + y + z (y 重复 k 次,k 为某个整数)。
输入输出数据格式:
输入:
- 第一行包含两个整数 n 和 m(1 ≤ n < m ≤ 10^7),分别表示字符串 s 和 t 的长度。
- 第二行包含一个长度为 n 的字符串 s,由小写英文字母组成。
- 第三行包含一个长度为 m 的字符串 t,由小写英文字母组成。
输出:
- 输出一个整数:满足条件的三元组 (x, y, z) 的数量。
示例:
输入:
4 8
abcd
abcbcbcd
输出:
1
解释:
唯一有效的三元组是 (x, y, z) = ("a", "bc", "d")。实际上,
- "abcd" = "a" + "bc" + "d";
- "abcbcbcd" = "a" + "bc" + "bc" + "bc" + "d"。题目大意: 给定两个字符串 s 和 t,长度分别为 n 和 m。字符串由小写英文字母组成。计算满足以下条件的三元组 (x, y, z) 的数量: 1. s = x + y + z (+ 表示字符串连接); 2. t = x + y + ... + y + z (y 重复 k 次,k 为某个整数)。 输入输出数据格式: 输入: - 第一行包含两个整数 n 和 m(1 ≤ n < m ≤ 10^7),分别表示字符串 s 和 t 的长度。 - 第二行包含一个长度为 n 的字符串 s,由小写英文字母组成。 - 第三行包含一个长度为 m 的字符串 t,由小写英文字母组成。 输出: - 输出一个整数:满足条件的三元组 (x, y, z) 的数量。 示例: 输入: 4 8 abcd abcbcbcd 输出: 1 解释: 唯一有效的三元组是 (x, y, z) = ("a", "bc", "d")。实际上, - "abcd" = "a" + "bc" + "d"; - "abcbcbcd" = "a" + "bc" + "bc" + "bc" + "d"。