310301: CF1811G2. Vlad and the Nice Paths (hard version)

Memory Limit:512 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:1 Solved:0

Description

G2. Vlad and the Nice Paths (hard version)time limit per test3 secondsmemory limit per test512 megabytesinputstandard inputoutputstandard output

This is hard version of the problem, it differs from the easy one only by constraints on $n$ and $k$.

Vlad found a row of $n$ tiles and the integer $k$. The tiles are indexed from left to right and the $i$-th tile has the color $c_i$. After a little thought, he decided what to do with it.

You can start from any tile and jump to any number of tiles right, forming the path $p$. Let's call the path $p$ of length $m$ nice if:

  • $p$ can be divided into blocks of length exactly $k$, that is, $m$ is divisible by $k$;
  • $c_{p_1} = c_{p_2} = \ldots = c_{p_k}$;
  • $c_{p_{k+1}} = c_{p_{k+2}} = \ldots = c_{p_{2k}}$;
  • $\ldots$
  • $c_{p_{m-k+1}} = c_{p_{m-k+2}} = \ldots = c_{p_{m}}$;

Your task is to find the number of nice paths of maximum length. Since this number may be too large, print it modulo $10^9 + 7$.

Input

The first line of each test contains the integer $t$ ($1 \le t \le 10^4$) — the number of test cases in the test.

The first line of each test case contains two integers $n$ and $k$ ($1 \le k \le n \le 5000$) — the number of tiles in a row and the length of the block.

The second line of each test case contains $n$ integers $c_1, c_2, c_3, \dots, c_n$ ($1 \le c_i \le n$) — tile colors.

It is guaranteed that the sum of $n^2$ over all test cases does not exceed $25 \cdot 10^6$.

Output

Print $t$ numbers, each of which is the answer to the corresponding test case — the number of nice paths of maximum length modulo $10^9 + 7$.

ExampleInput
5
5 2
1 2 3 4 5
7 2
1 3 1 3 3 1 3
11 4
1 1 1 1 1 1 1 1 1 1 1
5 2
1 1 2 2 2
5 1
1 2 3 4 5
Output
1
4
165
3
1
Note

In the first sample, it is impossible to make a nice path with a length greater than $0$.

In the second sample, we are interested in the following paths:

  • $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$
  • $2 \rightarrow 4 \rightarrow 5 \rightarrow 7$
  • $1 \rightarrow 3 \rightarrow 5 \rightarrow 7$
  • $1 \rightarrow 3 \rightarrow 4 \rightarrow 7$

In the third example, any path of length $8$ is nice.

Input

题意翻译

这是这道题的困难版本,与简单版本的区别是 $n$ 和 $k$ 的限制。 Ly 有 $n$ 个粉丝,和一个整数 $k$,第 $i$ 个粉丝的颜色是 $c_i$。 Ly 想观看他的粉丝对他的膜拜程度,他会从任意一个粉丝开始,每次向前跳到任意一个粉丝,并且随时可以终止,这样形成了一个路径。 我们定义一个长度为 $m$ 的路径 $p$ 是好的路径,有以下条件: - $m$ 是 $k$ 的倍数。 - $c_{p_1} = c_{p_2} = \cdots = c_{p_k}$。 - $c_{p_{k+1}}=c_{p_{k+2}}=\cdots=c_{p_{2k}}$ - $\cdots$ - $c_{p_{m-k+1}}=c_{p_{m-k+2}}=\cdots=c_{p_m}$ 你的任务是找出最长的好路径的**数量**。答案对 $10^9+7$ 取余。 507348 翻译。

加入题单

算法标签: