309278: CF1656D. K-good
Memory Limit:256 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
K-good
题意翻译
给定一个整数 $n$,请找出一个大于等于 $2$ 的整数 $k$,使得 $n$ 可以表示成 $k$ 个除以 $k$ 的余数互不相同的正整数之和。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 10^5$。 - $2\leqslant n\leqslant 10^{18}$。 Translated by Eason_AC题目描述
We say that a positive integer $ n $ is $ k $ -good for some positive integer $ k $ if $ n $ can be expressed as a sum of $ k $ positive integers which give $ k $ distinct remainders when divided by $ k $ . Given a positive integer $ n $ , find some $ k \geq 2 $ so that $ n $ is $ k $ -good or tell that such a $ k $ does not exist.输入输出格式
输入格式
The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^5 $ ) — the number of test cases. Each test case consists of one line with an integer $ n $ ( $ 2 \leq n \leq 10^{18} $ ).
输出格式
For each test case, print a line with a value of $ k $ such that $ n $ is $ k $ -good ( $ k \geq 2 $ ), or $ -1 $ if $ n $ is not $ k $ -good for any $ k $ . If there are multiple valid values of $ k $ , you can print any of them.
输入输出样例
输入样例 #1
5
2
4
6
15
20
输出样例 #1
-1
-1
3
3
5