309201: CF1641E. Special Positions
Memory Limit:512 MB
Time Limit:5 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Special Positions
题意翻译
给定长度为 $n$ 的数组 $a$,长度为 $m$ 的数组 $p$,其中 $1 \le p_i \le n$ ,而且 $\forall j, p_i \not = p_j$。 在 $p$ 中等概率选定一个非空集合,求 $\sum_{i = 1} ^ n a_i \times |i - p_j|$ 其中 $p_j$ 是选定集合中 $|i - p_j|$ 最小的 $p$。 $m \le n \le 10^5, a_i \le 998244352, 1 \le p_i \le n, p_i$ 两两不同。题目描述
You are given an array $ a $ of length $ n $ . Also you are given $ m $ distinct positions $ p_1, p_2, \ldots, p_m $ ( $ 1 \leq p_i \leq n $ ). A non-empty subset of these positions $ T $ is randomly selected with equal probability and the following value is calculated: $ $\sum_{i=1}^{n} (a_i \cdot \min_{j \in T} \left|i - j\right|). $ $ In other word, for each index of the array, $ a\_i $ and the distance to the closest chosen position are multiplied, and then these values are summed up.</p><p>Find the expected value of this sum.</p><p>This value must be found modulo $ 998\\,244\\,353 $ . More formally, let $ M = 998\\,244\\,353 $ . It can be shown that the answer can be represented as an irreducible fraction $ \\frac{p}{q} $ , where $ p $ and $ q $ are integers and $ q \\neq 0 $ (mod $ M $ ). Output the integer equal to $ p \\cdot q^{-1} $ (mod $ M $ ). In other words, output such integer $ x $ that $ 0 \\leq x < M $ and $ x \\cdot q = p $ (mod $ M$).输入输出格式
输入格式
The first line contains two integers $ n $ and $ m $ ( $ 1 \leq m \leq n \leq 10^5 $ ). The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 0 \leq a_i < 998\,244\,353 $ ). The third line contains $ m $ distinct integers $ p_1, p_2, \ldots, p_m $ ( $ 1 \leq p_i \le n $ ). For every $ 1 \leq i < m $ it is guaranteed that $ p_i < p_{i+1} $ .
输出格式
Print a single integer — the answer to the problem.
输入输出样例
输入样例 #1
4 2
1 2 3 4
1 4
输出样例 #1
665496247
输入样例 #2
6 6
4 2 4 2 4 2
1 2 3 4 5 6
输出样例 #2
855638030