309050: CF1617B. GCD Problem
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
GCD Problem
题意翻译
给定一个正整数 $n$,请找出一组**互不相同**的正整数 $a,b,c$,使得: - $a+b+c=n$。 - $\gcd(a,b)=c$。 其中 $\gcd(x,y)$ 表示 $x$ 和 $y$ 的最大公因数。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 10^5$。 - $10\leqslant n\leqslant 10^9$。 Translated by Eason_AC 2021.12.17题目描述
Given a positive integer $ n $ . Find three distinct positive integers $ a $ , $ b $ , $ c $ such that $ a + b + c = n $ and $ \operatorname{gcd}(a, b) = c $ , where $ \operatorname{gcd}(x, y) $ denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers $ x $ and $ y $ .输入输出格式
输入格式
The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10^5 $ ) — the number of test cases. Description of the test cases follows. The first and only line of each test case contains a single integer $ n $ ( $ 10 \le n \le 10^9 $ ).
输出格式
For each test case, output three distinct positive integers $ a $ , $ b $ , $ c $ satisfying the requirements. If there are multiple solutions, you can print any. We can show that an answer always exists.
输入输出样例
输入样例 #1
6
18
63
73
91
438
122690412
输出样例 #1
6 9 3
21 39 3
29 43 1
49 35 7
146 219 73
28622 122661788 2