309014: CF1612A. Distance
Memory Limit:512 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Distance
题意翻译
定义两个点 $p_1$(坐标为$(x_1,y_1)$)和 $p_2$(坐标为$(x_2,y_2)$)的距离为 $d(p_1,p_2) = |x_1 - x_2| + |y_1 - y_2|$。 给定点 $A$ 的坐标 $(0,0)$ 和点 $B$ 的坐标 $(x,y)$,求得任意一个点 $C$,使得 $d(A,C) = d(B,C) = \frac{d(A,B)}{2}$(不考虑取整)。 输出 $C$ 的坐标,如果没有合法的 $C$,输出 $(-1,-1)$。 感谢 @[rsg23](https://www.luogu.com.cn/user/384498) 提交的翻译题目描述
Let's denote the Manhattan distance between two points $ p_1 $ (with coordinates $ (x_1, y_1) $ ) and $ p_2 $ (with coordinates $ (x_2, y_2) $ ) as $ d(p_1, p_2) = |x_1 - x_2| + |y_1 - y_2| $ . For example, the distance between two points with coordinates $ (1, 3) $ and $ (4, 2) $ is $ |1 - 4| + |3 - 2| = 4 $ . You are given two points, $ A $ and $ B $ . The point $ A $ has coordinates $ (0, 0) $ , the point $ B $ has coordinates $ (x, y) $ . Your goal is to find a point $ C $ such that: - both coordinates of $ C $ are non-negative integers; - $ d(A, C) = \dfrac{d(A, B)}{2} $ (without any rounding); - $ d(B, C) = \dfrac{d(A, B)}{2} $ (without any rounding). Find any point $ C $ that meets these constraints, or report that no such point exists.输入输出格式
输入格式
The first line contains one integer $ t $ ( $ 1 \le t \le 3000 $ ) — the number of test cases. Each test case consists of one line containing two integers $ x $ and $ y $ ( $ 0 \le x, y \le 50 $ ) — the coordinates of the point $ B $ .
输出格式
For each test case, print the answer on a separate line as follows: - if it is impossible to find a point $ C $ meeting the constraints, print "-1 -1" (without quotes); - otherwise, print two non-negative integers not exceeding $ 10^6 $ — the coordinates of point $ C $ meeting the constraints. If there are multiple answers, print any of them. It can be shown that if any such point exists, it's possible to find a point with coordinates not exceeding $ 10^6 $ that meets the constraints.
输入输出样例
输入样例 #1
10
49 3
2 50
13 0
0 41
42 0
0 36
13 37
42 16
42 13
0 0
输出样例 #1
23 3
1 25
-1 -1
-1 -1
21 0
0 18
13 12
25 4
-1 -1
0 0