308983: CF1608B. Build the Permutation
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Build the Permutation
题意翻译
给出 $n , a , b$,构造一个包含 $1$ 至 $n$ 的数列 $p_1,p_2,...,p_n$ 使得 - 刚好有 $a$ 项 $p_i (2 \leqslant i \leqslant n-1)$ 满足 $p_{i-1} < p_i > q_{i+1}$。 - 刚好有 $b$ 项 $p_i (2 \leqslant i \leqslant n-1)$ 满足 $p_{i-1} > p_i < q_{i+1}$。 若无解则输出 $-1$。 有多组数据。题目描述
You are given three integers $ n, a, b $ . Determine if there exists a permutation $ p_1, p_2, \ldots, p_n $ of integers from $ 1 $ to $ n $ , such that: - There are exactly $ a $ integers $ i $ with $ 2 \le i \le n-1 $ such that $ p_{i-1} < p_i > p_{i+1} $ (in other words, there are exactly $ a $ local maximums). - There are exactly $ b $ integers $ i $ with $ 2 \le i \le n-1 $ such that $ p_{i-1} > p_i < p_{i+1} $ (in other words, there are exactly $ b $ local minimums). If such permutations exist, find any such permutation.输入输出格式
输入格式
The first line of the input contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The description of test cases follows. The only line of each test case contains three integers $ n $ , $ a $ and $ b $ ( $ 2 \leq n \leq 10^5 $ , $ 0 \leq a,b \leq n $ ). The sum of $ n $ over all test cases doesn't exceed $ 10^5 $ .
输出格式
For each test case, if there is no permutation with the requested properties, output $ -1 $ . Otherwise, print the permutation that you are found. If there are several such permutations, you may print any of them.
输入输出样例
输入样例 #1
3
4 1 1
6 1 2
6 4 0
输出样例 #1
1 3 2 4
4 2 3 1 5 6
-1