308943: CF1601F. Two Sorts

Memory Limit:512 MB Time Limit:4 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Two Sorts

题意翻译

## 题目描述 有一个数列 $ \{a_1,a_2,\dots,a_n\}$是一个1~n的排列,且所有的数都按照**字典序**排序,现在给出整数 $n(1\le n\le 10^{12})$, 求 $(\sum_{i=1}^{n}((i-a_i)\mod 998244353))\mod 10^9+7$ ,注意这里的 $x\mod y$的结果为正数 ## 输入格式 一行一个正整数 $n$ ## 输出格式 一行一个非负整数,代表你的答案

题目描述

Integers from $ 1 $ to $ n $ (inclusive) were sorted lexicographically (considering integers as strings). As a result, array $ a_1, a_2, \dots, a_n $ was obtained. Calculate value of $ (\sum_{i = 1}^n ((i - a_i) \mod 998244353)) \mod 10^9 + 7 $ . $ x \mod y $ here means the remainder after division $ x $ by $ y $ . This remainder is always non-negative and doesn't exceed $ y - 1 $ . For example, $ 5 \mod 3 = 2 $ , $ (-1) \mod 6 = 5 $ .

输入输出格式

输入格式


The first line contains the single integer $ n $ ( $ 1 \leq n \leq 10^{12} $ ).

输出格式


Print one integer — the required sum.

输入输出样例

输入样例 #1

3

输出样例 #1

0

输入样例 #2

12

输出样例 #2

994733045

输入样例 #3

21

输出样例 #3

978932159

输入样例 #4

1000000000000

输出样例 #4

289817887

说明

A string $ a $ is lexicographically smaller than a string $ b $ if and only if one of the following holds: - $ a $ is a prefix of $ b $ , but $ a \ne b $ ; - in the first position where $ a $ and $ b $ differ, the string $ a $ has a letter that appears earlier in the alphabet than the corresponding letter in $ b $ . For example, $ 42 $ is lexicographically smaller than $ 6 $ , because they differ in the first digit, and $ 4 < 6 $ ; $ 42 < 420 $ , because $ 42 $ is a prefix of $ 420 $ . Let's denote $ 998244353 $ as $ M $ . In the first example, array $ a $ is equal to $ [1, 2, 3] $ . - $ (1 - 1) \mod M = 0 \mod M = 0 $ - $ (2 - 2) \mod M = 0 \mod M = 0 $ - $ (3 - 3) \mod M = 0 \mod M = 0 $ As a result, $ (0 + 0 + 0) \mod 10^9 + 7 = 0 $ In the second example, array $ a $ is equal to $ [1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9] $ . - $ (1 - 1) \mod M = 0 \mod M = 0 $ - $ (2 - 10) \mod M = (-8) \mod M = 998244345 $ - $ (3 - 11) \mod M = (-8) \mod M = 998244345 $ - $ (4 - 12) \mod M = (-8) \mod M = 998244345 $ - $ (5 - 2) \mod M = 3 \mod M = 3 $ - $ (6 - 3) \mod M = 3 \mod M = 3 $ - $ (7 - 4) \mod M = 3 \mod M = 3 $ - $ (8 - 5) \mod M = 3 \mod M = 3 $ - $ (9 - 6) \mod M = 3 \mod M = 3 $ - $ (10 - 7) \mod M = 3 \mod M = 3 $ - $ (11 - 8) \mod M = 3 \mod M = 3 $ - $ (12 - 9) \mod M = 3 \mod M = 3 $ As a result, $ (0 + 998244345 + 998244345 + 998244345 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3) \mod 10^9 + 7 $ $ = $ $ 2994733059 \mod 10^9 + 7 $ $ = $ $ 994733045 $

Input

题意翻译

## 题目描述 有一个数列 $ \{a_1,a_2,\dots,a_n\}$是一个1~n的排列,且所有的数都按照**字典序**排序,现在给出整数 $n(1\le n\le 10^{12})$, 求 $(\sum_{i=1}^{n}((i-a_i)\mod 998244353))\mod 10^9+7$ ,注意这里的 $x\mod y$的结果为正数 ## 输入格式 一行一个正整数 $n$ ## 输出格式 一行一个非负整数,代表你的答案

加入题单

上一题 下一题 算法标签: