308848: CF1584A. Mathematical Addition
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Mathematical Addition
题意翻译
$t$ 组数据,每组给出两个正整数 $u,v$ 求任意一组整数 $x,y$ 使得 $\frac{x}{u}+\frac{y}{v}=\frac{x+y}{u+v}$ 且 $(x,y)\neq(0,0)$ 且 $-10^{18}\le x,y\le 10^{18}$。$1\le t\le 10^3,1\le u,v\le 10^9$。题目描述
Ivan decided to prepare for the test on solving integer equations. He noticed that all tasks in the test have the following form: - You are given two positive integers $ u $ and $ v $, find any pair of integers (**not necessarily positive**) $ x $, $ y $, such that: $$\frac{x}{u} + \frac{y}{v} = \frac{x + y}{u + v}.$$ - The solution $x = 0$, $ y = 0 $ is forbidden, so you should find any solution with $(x, y) \neq (0, 0)$. Please help Ivan to solve some equations of this form.输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^3 $ ) — the number of test cases. The next lines contain descriptions of test cases. The only line of each test case contains two integers $ u $ and $ v $ ( $ 1 \leq u, v \leq 10^9 $ ) — the parameters of the equation.
输出格式
For each test case print two integers $ x $ , $ y $ — a possible solution to the equation. It should be satisfied that $ -10^{18} \leq x, y \leq 10^{18} $ and $ (x, y) \neq (0, 0) $ . We can show that an answer always exists. If there are multiple possible solutions you can print any.
输入输出样例
输入样例 #1
4
1 1
2 3
3 5
6 9
输出样例 #1
-1 1
-4 9
-18 50
-4 9