308620: CF1548B. Integers Have Friends

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Integers Have Friends

题意翻译

+ 给定 $n$ 和一个长度为 $n$ 的数组 $a$,求一个**最长**的区间 $\left[l,r\right]$,使得存在 $m\geq 2$ 和 $k$,对于所有 $l\leq i\leq r,a_i\equiv k\pmod{m}$(即**区间内所有数对 $m$ 取模余数相等**),输出最长区间长度(区间长度定义为 $r-l+1$)。 + **有多组测试数据**。

题目描述

British mathematician John Littlewood once said about Indian mathematician Srinivasa Ramanujan that "every positive integer was one of his personal friends." It turns out that positive integers can also be friends with each other! You are given an array $ a $ of distinct positive integers. Define a subarray $ a_i, a_{i+1}, \ldots, a_j $ to be a friend group if and only if there exists an integer $ m \ge 2 $ such that $ a_i \bmod m = a_{i+1} \bmod m = \ldots = a_j \bmod m $ , where $ x \bmod y $ denotes the remainder when $ x $ is divided by $ y $ . Your friend Gregor wants to know the size of the largest friend group in $ a $ .

输入输出格式

输入格式


Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 2\cdot 10^4 $ ). Each test case begins with a line containing the integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ), the size of the array $ a $ . The next line contains $ n $ positive integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le {10}^{18} $ ), representing the contents of the array $ a $ . It is guaranteed that all the numbers in $ a $ are distinct. It is guaranteed that the sum of $ n $ over all test cases is less than $ 2\cdot 10^5 $ .

输出格式


Your output should consist of $ t $ lines. Each line should consist of a single integer, the size of the largest friend group in $ a $ .

输入输出样例

输入样例 #1

4
5
1 5 2 4 6
4
8 2 5 10
2
1000 2000
8
465 55 3 54 234 12 45 78

输出样例 #1

3
3
2
6

说明

In the first test case, the array is $ [1,5,2,4,6] $ . The largest friend group is $ [2,4,6] $ , since all those numbers are congruent to $ 0 $ modulo $ 2 $ , so $ m=2 $ . In the second test case, the array is $ [8,2,5,10] $ . The largest friend group is $ [8,2,5] $ , since all those numbers are congruent to $ 2 $ modulo $ 3 $ , so $ m=3 $ . In the third case, the largest friend group is $ [1000,2000] $ . There are clearly many possible values of $ m $ that work.

Input

题意翻译

+ 给定 $n$ 和一个长度为 $n$ 的数组 $a$,求一个**最长**的区间 $\left[l,r\right]$,使得存在 $m\geq 2$ 和 $k$,对于所有 $l\leq i\leq r,a_i\equiv k\pmod{m}$(即**区间内所有数对 $m$ 取模余数相等**),输出最长区间长度(区间长度定义为 $r-l+1$)。 + **有多组测试数据**。

加入题单

上一题 下一题 算法标签: