308313: CF1498C. Planar Reflections
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Planar Reflections
题意翻译
有 $n$ 个平面,从它们的最左端向右发射一个能量级别为 $k$ 的粒子,问你最后有多少个粒子,答案对 $1e9+7$ 取模。 若一个能级为 $k$ 的粒子穿过一个平面,则它自己会继续原来的方向飞行,能级不改变,平面会生成一个能级为 $k-1$ 的粒子,飞向这个粒子的反方向。 多测,$t$ 组数据。 $\sum{n},\sum{k}\leq1000,t\leq100$题目描述
Gaurang has grown up in a mystical universe. He is faced by $ n $ consecutive 2D planes. He shoots a particle of decay age $ k $ at the planes. A particle can pass through a plane directly, however, every plane produces an identical copy of the particle going in the opposite direction with a decay age $ k-1 $ . If a particle has decay age equal to $ 1 $ , it will NOT produce a copy. For example, if there are two planes and a particle is shot with decay age $ 3 $ (towards the right), the process is as follows: (here, $ D(x) $ refers to a single particle with decay age $ x $ ) 1. the first plane produces a $ D(2) $ to the left and lets $ D(3) $ continue on to the right; 2. the second plane produces a $ D(2) $ to the left and lets $ D(3) $ continue on to the right; 3. the first plane lets $ D(2) $ continue on to the left and produces a $ D(1) $ to the right; 4. the second plane lets $ D(1) $ continue on to the right ( $ D(1) $ cannot produce any copies). In total, the final multiset $ S $ of particles is $ \{D(3), D(2), D(2), D(1)\} $ . (See notes for visual explanation of this test case.) Gaurang is unable to cope up with the complexity of this situation when the number of planes is too large. Help Gaurang find the size of the multiset $ S $ , given $ n $ and $ k $ . Since the size of the multiset can be very large, you have to output it modulo $ 10^9+7 $ . Note: Particles can go back and forth between the planes without colliding with each other.输入输出格式
输入格式
The first line of the input contains the number of test cases $ t $ ( $ 1 \le t \le 100 $ ). Then, $ t $ lines follow, each containing two integers $ n $ and $ k $ ( $ 1 \le n, k \le 1000 $ ). Additionally, the sum of $ n $ over all test cases will not exceed $ 1000 $ , and the sum of $ k $ over all test cases will not exceed $ 1000 $ . All test cases in one test are different.
输出格式
Output $ t $ integers. The $ i $ -th of them should be equal to the answer to the $ i $ -th test case.
输入输出样例
输入样例 #1
4
2 3
2 2
3 1
1 3
输出样例 #1
4
3
1
2
输入样例 #2
3
1 1
1 500
500 250
输出样例 #2
1
2
257950823