308226: CF1485E. Move and Swap
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Move and Swap
题意翻译
有一棵树,以$1$为根,叶子结点深度相同,结点 $i$ 有权值 $a_i$。现在有红蓝两颗棋子,每一步可以进行如下操作: - 把红色棋子移动到它的子节点 - 把蓝色棋子移动到它下一层的任何一个结点 - 选择交换或不交换红子与蓝子的位置 - 计算得分为 $|a_{red}-a_{blue}|$ 问最大的得分和 翻译 by jun头吉吉题目描述
You are given $ n - 1 $ integers $ a_2, \dots, a_n $ and a tree with $ n $ vertices rooted at vertex $ 1 $ . The leaves are all at the same distance $ d $ from the root. Recall that a tree is a connected undirected graph without cycles. The distance between two vertices is the number of edges on the simple path between them. All non-root vertices with degree $ 1 $ are leaves. If vertices $ s $ and $ f $ are connected by an edge and the distance of $ f $ from the root is greater than the distance of $ s $ from the root, then $ f $ is called a child of $ s $ . Initially, there are a red coin and a blue coin on the vertex $ 1 $ . Let $ r $ be the vertex where the red coin is and let $ b $ be the vertex where the blue coin is. You should make $ d $ moves. A move consists of three steps: - Move the red coin to any child of $ r $ . - Move the blue coin to any vertex $ b' $ such that $ dist(1, b') = dist(1, b) + 1 $ . Here $ dist(x, y) $ indicates the length of the simple path between $ x $ and $ y $ . Note that $ b $ and $ b' $ are not necessarily connected by an edge. - You can optionally swap the two coins (or skip this step). Note that $ r $ and $ b $ can be equal at any time, and there is no number written on the root. After each move, you gain $ |a_r - a_b| $ points. What's the maximum number of points you can gain after $ d $ moves?输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The first line of each test case contains a single integer $ n $ ( $ 2 \leq n \leq 2 \cdot 10^5 $ ) — the number of vertices in the tree. The second line of each test case contains $ n-1 $ integers $ v_2, v_3, \dots, v_n $ ( $ 1 \leq v_i \leq n $ , $ v_i \neq i $ ) — the $ i $ -th of them indicates that there is an edge between vertices $ i $ and $ v_i $ . It is guaranteed, that these edges form a tree. The third line of each test case contains $ n-1 $ integers $ a_2, \dots, a_n $ ( $ 1 \leq a_i \leq 10^9 $ ) — the numbers written on the vertices. It is guaranteed that the sum of $ n $ for all test cases does not exceed $ 2 \cdot 10^5 $ .
输出格式
For each test case, print a single integer: the maximum number of points you can gain after $ d $ moves.
输入输出样例
输入样例 #1
4
14
1 1 1 2 3 4 4 5 5 6 7 8 8
2 3 7 7 6 9 5 9 7 3 6 6 5
6
1 2 2 3 4
32 78 69 5 41
15
1 15 1 10 4 9 11 2 4 1 8 6 10 11
62 13 12 43 39 65 42 86 25 38 19 19 43 62
15
11 2 7 6 9 8 10 1 1 1 5 3 15 2
50 19 30 35 9 45 13 24 8 44 16 26 10 40
输出样例 #1
14
45
163
123