307997: CF1450C1. Errich-Tac-Toe (Easy Version)
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Errich-Tac-Toe (Easy Version)
题意翻译
此题的简单版本与困难版本的不同只有困难版本的初始棋盘中含有 o 棋子,而简单版本没有。 这里有一个 $n$ 行 $n$ 列的井字棋棋盘,棋盘中的每一个格子要么是空的,要么包含一个棋子。 这里有两种棋子分别为 x 和 o 。如果有三个同种类的棋子连续横着或竖着排列,则称这是获胜局。(注意:斜着不算) 如果棋盘中没有这样的连续三个同种类的排列,则称这是一个平局。 在一次操作中,你可以将一个 x 棋子变为 o 棋子。令 $k$ 为初始棋盘中棋子的总数,你可以做最多 $\left\lfloor\dfrac{k}{3}\right\rfloor$ 次上述操作使得最后的局面为平局。注意:你不需要最小化操作次数。题目描述
The only difference between the easy and hard versions is that tokens of type O do not appear in the input of the easy version. Errichto gave Monogon the following challenge in order to intimidate him from taking his top contributor spot on Codeforces. In a Tic-Tac-Toe grid, there are $ n $ rows and $ n $ columns. Each cell of the grid is either empty or contains a token. There are two types of tokens: X and O. If there exist three tokens of the same type consecutive in a row or column, it is a winning configuration. Otherwise, it is a draw configuration. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1450C1/39afc6239351b009b5f556b0fc6f685f7842a873.png) The patterns in the first row are winning configurations. The patterns in the second row are draw configurations. In an operation, you can change an X to an O, or an O to an X. Let $ k $ denote the total number of tokens in the grid. Your task is to make the grid a draw in at most $ \lfloor \frac{k}{3}\rfloor $ (rounding down) operations. You are not required to minimize the number of operations.输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1\le t\le 100 $ ) — the number of test cases. The first line of each test case contains a single integer $ n $ ( $ 1\le n\le 300 $ ) — the size of the grid. The following $ n $ lines each contain a string of $ n $ characters, denoting the initial grid. The character in the $ i $ -th row and $ j $ -th column is '.' if the cell is empty, or it is the type of token in the cell: 'X' or 'O'. It is guaranteed that not all cells are empty. In the easy version, the character 'O' does not appear in the input. The sum of $ n $ across all test cases does not exceed $ 300 $ .
输出格式
For each test case, print the state of the grid after applying the operations. We have proof that a solution always exists. If there are multiple solutions, print any.
输入输出样例
输入样例 #1
3
3
.X.
XXX
.X.
6
XX.XXX
XXXXXX
XXX.XX
XXXXXX
XX.X.X
XXXXXX
5
XXX.X
.X..X
XXX.X
..X..
..X..
输出样例 #1
.X.
XOX
.X.
XX.XXO
XOXXOX
OXX.XX
XOOXXO
XX.X.X
OXXOXX
XOX.X
.X..X
XXO.O
..X..
..X..