307961: CF1442C. Graph Transpositions
Memory Limit:512 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Graph Transpositions
题意翻译
## 题目描述 给你一个$n$个顶点和$m$条边的有向图。顶点编号从$1$到$n$。顶点$1$处有一个标记。 你可以进行以下两种操作: - 移动标记:如果存在一条$u\to v$的边,将标记从$u$移动到$v$,这个操作需要$1$秒。 - 图翻转:翻转图上的所有边的方向,将图上**每一条边**$u\to v$替换为$v\to u$,第$k$次使用这个操作需要耗时$2^{k-1}$秒。 你需要找到将标记从$1$移动到$n$的最短时间,请将答案对$998,244,353$取模。 ## 输入格式 第一行两个整数$n,m$,表示点数和边数。 接下来$m$行每行两个整数$u,v$,表示存在一条$u\to v$的**有向边**。 ## 输出格式 输出一个整数,表示答案对$998,244,353$取模后的结果。 ## 数据范围与约定 $1\leq n,m\leq 200000,1\leq u,v\leq n,u\not =v$。 保证不存在重边并且至少存在一种从$1$到$n$的方案。 translated by $\texttt{lory1608}$题目描述
You are given a directed graph of $ n $ vertices and $ m $ edges. Vertices are numbered from $ 1 $ to $ n $ . There is a token in vertex $ 1 $ . The following actions are allowed: - Token movement. To move the token from vertex $ u $ to vertex $ v $ if there is an edge $ u \to v $ in the graph. This action takes $ 1 $ second. - Graph transposition. To transpose all the edges in the graph: replace each edge $ u \to v $ by an edge $ v \to u $ . This action takes increasingly more time: $ k $ -th transposition takes $ 2^{k-1} $ seconds, i.e. the first transposition takes $ 1 $ second, the second one takes $ 2 $ seconds, the third one takes $ 4 $ seconds, and so on. The goal is to move the token from vertex $ 1 $ to vertex $ n $ in the shortest possible time. Print this time modulo $ 998\,244\,353 $ .输入输出格式
输入格式
The first line of input contains two integers $ n, m $ ( $ 1 \le n, m \le 200\,000 $ ). The next $ m $ lines contain two integers each: $ u, v $ ( $ 1 \le u, v \le n; u \ne v $ ), which represent the edges of the graph. It is guaranteed that all ordered pairs $ (u, v) $ are distinct. It is guaranteed that it is possible to move the token from vertex $ 1 $ to vertex $ n $ using the actions above.
输出格式
Print one integer: the minimum required time modulo $ 998\,244\,353 $ .
输入输出样例
输入样例 #1
4 4
1 2
2 3
3 4
4 1
输出样例 #1
2
输入样例 #2
4 3
2 1
2 3
4 3
输出样例 #2
10