307746: CF1408A. Circle Coloring

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Circle Coloring

题意翻译

### 题意: 有三个长度为 $n$ 的数组,分别为,$a$ 数组,$b$ 数组,$c$ 数组,满足 $a_i \neq b_i \neq c_i $。现在想输出一个长度为 $n$ 的 $ p$ 数组。条件是: - $p_i \in \{a_i, b_i, c_i\}$ - $p_i \neq p_{(i \mod n) + 1}$ 有 $t$ 组测试数据。

题目描述

You are given three sequences: $ a_1, a_2, \ldots, a_n $ ; $ b_1, b_2, \ldots, b_n $ ; $ c_1, c_2, \ldots, c_n $ . For each $ i $ , $ a_i \neq b_i $ , $ a_i \neq c_i $ , $ b_i \neq c_i $ . Find a sequence $ p_1, p_2, \ldots, p_n $ , that satisfy the following conditions: - $ p_i \in \{a_i, b_i, c_i\} $ - $ p_i \neq p_{(i \mod n) + 1} $ . In other words, for each element, you need to choose one of the three possible values, such that no two adjacent elements (where we consider elements $ i,i+1 $ adjacent for $ i<n $ and also elements $ 1 $ and $ n $ ) will have equal value. It can be proved that in the given constraints solution always exists. You don't need to minimize/maximize anything, you need to find any proper sequence.

输入输出格式

输入格式


The first line of input contains one integer $ t $ ( $ 1 \leq t \leq 100 $ ): the number of test cases. The first line of each test case contains one integer $ n $ ( $ 3 \leq n \leq 100 $ ): the number of elements in the given sequences. The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 100 $ ). The third line contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \leq b_i \leq 100 $ ). The fourth line contains $ n $ integers $ c_1, c_2, \ldots, c_n $ ( $ 1 \leq c_i \leq 100 $ ). It is guaranteed that $ a_i \neq b_i $ , $ a_i \neq c_i $ , $ b_i \neq c_i $ for all $ i $ .

输出格式


For each test case, print $ n $ integers: $ p_1, p_2, \ldots, p_n $ ( $ p_i \in \{a_i, b_i, c_i\} $ , $ p_i \neq p_{i \mod n + 1} $ ). If there are several solutions, you can print any.

输入输出样例

输入样例 #1

5
3
1 1 1
2 2 2
3 3 3
4
1 2 1 2
2 1 2 1
3 4 3 4
7
1 3 3 1 1 1 1
2 4 4 3 2 2 4
4 2 2 2 4 4 2
3
1 2 1
2 3 3
3 1 2
10
1 1 1 2 2 2 3 3 3 1
2 2 2 3 3 3 1 1 1 2
3 3 3 1 1 1 2 2 2 3

输出样例 #1

1 2 3
1 2 1 2
1 3 4 3 2 4 2
1 3 2
1 2 3 1 2 3 1 2 3 2

说明

In the first test case $ p = [1, 2, 3] $ . It is a correct answer, because: - $ p_1 = 1 = a_1 $ , $ p_2 = 2 = b_2 $ , $ p_3 = 3 = c_3 $ - $ p_1 \neq p_2 $ , $ p_2 \neq p_3 $ , $ p_3 \neq p_1 $ All possible correct answers to this test case are: $ [1, 2, 3] $ , $ [1, 3, 2] $ , $ [2, 1, 3] $ , $ [2, 3, 1] $ , $ [3, 1, 2] $ , $ [3, 2, 1] $ . In the second test case $ p = [1, 2, 1, 2] $ . In this sequence $ p_1 = a_1 $ , $ p_2 = a_2 $ , $ p_3 = a_3 $ , $ p_4 = a_4 $ . Also we can see, that no two adjacent elements of the sequence are equal. In the third test case $ p = [1, 3, 4, 3, 2, 4, 2] $ . In this sequence $ p_1 = a_1 $ , $ p_2 = a_2 $ , $ p_3 = b_3 $ , $ p_4 = b_4 $ , $ p_5 = b_5 $ , $ p_6 = c_6 $ , $ p_7 = c_7 $ . Also we can see, that no two adjacent elements of the sequence are equal.

Input

题意翻译

### 题意: 有三个长度为 $n$ 的数组,分别为,$a$ 数组,$b$ 数组,$c$ 数组,满足 $a_i \neq b_i \neq c_i $。现在想输出一个长度为 $n$ 的 $ p$ 数组。条件是: - $p_i \in \{a_i, b_i, c_i\}$ - $p_i \neq p_{(i \mod n) + 1}$ 有 $t$ 组测试数据。

加入题单

上一题 下一题 算法标签: