307739: CF1406D. Three Sequences
Memory Limit:512 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Three Sequences
题意翻译
给定一个序列$a_1,a_2,\ldots ,a_n$,长度为$n$的序列$b,c$符合以下条件 1. $a_i=b_i+c_i$ 2. $b$为不下降序列,$c$为不上升序列,即$b_i\geq b_{i-1}, c_i\leq c_{i-1}$ 有$q$个操作,每次操作可以把$[l,r]$的数增加$x$。求每次操作后最小的$\max(b_i,c_i)$题目描述
You are given a sequence of $ n $ integers $ a_1, a_2, \ldots, a_n $ . You have to construct two sequences of integers $ b $ and $ c $ with length $ n $ that satisfy: - for every $ i $ ( $ 1\leq i\leq n $ ) $ b_i+c_i=a_i $ - $ b $ is non-decreasing, which means that for every $ 1<i\leq n $ , $ b_i\geq b_{i-1} $ must hold - $ c $ is non-increasing, which means that for every $ 1<i\leq n $ , $ c_i\leq c_{i-1} $ must hold You have to minimize $ \max(b_i,c_i) $ . In other words, you have to minimize the maximum number in sequences $ b $ and $ c $ . Also there will be $ q $ changes, the $ i $ -th change is described by three integers $ l,r,x $ . You should add $ x $ to $ a_l,a_{l+1}, \ldots, a_r $ . You have to find the minimum possible value of $ \max(b_i,c_i) $ for the initial sequence and for sequence after each change.输入输出格式
输入格式
The first line contains an integer $ n $ ( $ 1\leq n\leq 10^5 $ ). The secound line contains $ n $ integers $ a_1,a_2,\ldots,a_n $ ( $ 1\leq i\leq n $ , $ -10^9\leq a_i\leq 10^9 $ ). The third line contains an integer $ q $ ( $ 1\leq q\leq 10^5 $ ). Each of the next $ q $ lines contains three integers $ l,r,x $ ( $ 1\leq l\leq r\leq n,-10^9\leq x\leq 10^9 $ ), desribing the next change.
输出格式
Print $ q+1 $ lines. On the $ i $ -th ( $ 1 \leq i \leq q+1 $ ) line, print the answer to the problem for the sequence after $ i-1 $ changes.
输入输出样例
输入样例 #1
4
2 -1 7 3
2
2 4 -3
3 4 2
输出样例 #1
5
5
6
输入样例 #2
6
-9 -10 -9 -6 -5 4
3
2 6 -9
1 2 -10
4 6 -3
输出样例 #2
3
3
3
1
输入样例 #3
1
0
2
1 1 -1
1 1 -1
输出样例 #3
0
0
-1