307701: CF1399B. Gifts Fixing

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Gifts Fixing

题意翻译

给定长度同为 $n$ 的数组 $a$ 和数组 $b$,每次你可以进行以下操作之一($1\le i\le n$): 1. $a_i \gets a_i-1$ 2. $b_i \gets b_i -1$ 3. 同时进行 $a_i \gets a_i-1$ 和 $b_i \gets b_i -1$ 当然 $a$ 和 $b$ 始终满足 $a_i,b_i\ge 0$。现在要求经过若干次操作后使得 $a_1 = a_2 = \cdots a_n$ 并且 $b_1 = b_2 = \cdots b_n$,不一定需要 $a_i=b_i$。求出最少的操作次数。 输入:$t$ 组数据($1\le t\le 1000$),每组数据包括:第一行一个整数 $n$($1\le n\le 50$),第二行 $n$ 个数,第 $i$ 个数表示 $a_i$($1\le a_i\le 10^9$),第三行 $n$ 个数,第 $i$ 个数表示 $b_i$($1\le b_i\le 10^9$)。 输出:对于每组数据,输出最少的操作次数。

题目描述

You have $ n $ gifts and you want to give all of them to children. Of course, you don't want to offend anyone, so all gifts should be equal between each other. The $ i $ -th gift consists of $ a_i $ candies and $ b_i $ oranges. During one move, you can choose some gift $ 1 \le i \le n $ and do one of the following operations: - eat exactly one candy from this gift (decrease $ a_i $ by one); - eat exactly one orange from this gift (decrease $ b_i $ by one); - eat exactly one candy and exactly one orange from this gift (decrease both $ a_i $ and $ b_i $ by one). Of course, you can not eat a candy or orange if it's not present in the gift (so neither $ a_i $ nor $ b_i $ can become less than zero). As said above, all gifts should be equal. This means that after some sequence of moves the following two conditions should be satisfied: $ a_1 = a_2 = \dots = a_n $ and $ b_1 = b_2 = \dots = b_n $ (and $ a_i $ equals $ b_i $ is not necessary). Your task is to find the minimum number of moves required to equalize all the given gifts. You have to answer $ t $ independent test cases.

输入输出格式

输入格式


The first line of the input contains one integer $ t $ ( $ 1 \le t \le 1000 $ ) — the number of test cases. Then $ t $ test cases follow. The first line of the test case contains one integer $ n $ ( $ 1 \le n \le 50 $ ) — the number of gifts. The second line of the test case contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ), where $ a_i $ is the number of candies in the $ i $ -th gift. The third line of the test case contains $ n $ integers $ b_1, b_2, \dots, b_n $ ( $ 1 \le b_i \le 10^9 $ ), where $ b_i $ is the number of oranges in the $ i $ -th gift.

输出格式


For each test case, print one integer: the minimum number of moves required to equalize all the given gifts.

输入输出样例

输入样例 #1

5
3
3 5 6
3 2 3
5
1 2 3 4 5
5 4 3 2 1
3
1 1 1
2 2 2
6
1 1000000000 1000000000 1000000000 1000000000 1000000000
1 1 1 1 1 1
3
10 12 8
7 5 4

输出样例 #1

6
16
0
4999999995
7

说明

In the first test case of the example, we can perform the following sequence of moves: - choose the first gift and eat one orange from it, so $ a = [3, 5, 6] $ and $ b = [2, 2, 3] $ ; - choose the second gift and eat one candy from it, so $ a = [3, 4, 6] $ and $ b = [2, 2, 3] $ ; - choose the second gift and eat one candy from it, so $ a = [3, 3, 6] $ and $ b = [2, 2, 3] $ ; - choose the third gift and eat one candy and one orange from it, so $ a = [3, 3, 5] $ and $ b = [2, 2, 2] $ ; - choose the third gift and eat one candy from it, so $ a = [3, 3, 4] $ and $ b = [2, 2, 2] $ ; - choose the third gift and eat one candy from it, so $ a = [3, 3, 3] $ and $ b = [2, 2, 2] $ .

Input

题意翻译

给定长度同为 $n$ 的数组 $a$ 和数组 $b$,每次你可以进行以下操作之一($1\le i\le n$): 1. $a_i \gets a_i-1$ 2. $b_i \gets b_i -1$ 3. 同时进行 $a_i \gets a_i-1$ 和 $b_i \gets b_i -1$ 当然 $a$ 和 $b$ 始终满足 $a_i,b_i\ge 0$。现在要求经过若干次操作后使得 $a_1 = a_2 = \cdots a_n$ 并且 $b_1 = b_2 = \cdots b_n$,不一定需要 $a_i=b_i$。求出最少的操作次数。 输入:$t$ 组数据($1\le t\le 1000$),每组数据包括:第一行一个整数 $n$($1\le n\le 50$),第二行 $n$ 个数,第 $i$ 个数表示 $a_i$($1\le a_i\le 10^9$),第三行 $n$ 个数,第 $i$ 个数表示 $b_i$($1\le b_i\le 10^9$)。 输出:对于每组数据,输出最少的操作次数。

加入题单

上一题 下一题 算法标签: