307551: CF1372E. Omkar and Last Floor
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Omkar and Last Floor
题意翻译
### 题目描述 一个 $n\times m$ 的矩阵,初始值全为 $0$ ,每一行都被分成若干部分,每一部分只能出现一个 $1$ ,设 $q_i$ 为第 $i$ 列 $1$ 的个数,求 $\sum_{i=1}^mq_i^2$ 的最大值。 ### 样例分析 矩阵如下: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1372E/e2f8400fab9b534d5d62160babde7e3b6dddc0b0.png) 当按照如下方法填写时,答案最大: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1372E/2ddfdd398d9b8946cd6796d76ff01c94ae1b5237.png) 此时答案为 $4^2+2^2+0^2+0^2+4^2=36$ 。题目描述
Omkar is building a house. He wants to decide how to make the floor plan for the last floor. Omkar's floor starts out as $ n $ rows of $ m $ zeros ( $ 1 \le n,m \le 100 $ ). Every row is divided into intervals such that every $ 0 $ in the row is in exactly $ 1 $ interval. For every interval for every row, Omkar can change exactly one of the $ 0 $ s contained in that interval to a $ 1 $ . Omkar defines the quality of a floor as the sum of the squares of the sums of the values in each column, i. e. if the sum of the values in the $ i $ -th column is $ q_i $ , then the quality of the floor is $ \sum_{i = 1}^m q_i^2 $ . Help Omkar find the maximum quality that the floor can have.输入输出格式
输入格式
The first line contains two integers, $ n $ and $ m $ ( $ 1 \le n,m \le 100 $ ), which are the number of rows and number of columns, respectively. You will then receive a description of the intervals in each row. For every row $ i $ from $ 1 $ to $ n $ : The first row contains a single integer $ k_i $ ( $ 1 \le k_i \le m $ ), which is the number of intervals on row $ i $ . The $ j $ -th of the next $ k_i $ lines contains two integers $ l_{i,j} $ and $ r_{i,j} $ , which are the left and right bound (both inclusive), respectively, of the $ j $ -th interval of the $ i $ -th row. It is guaranteed that all intervals other than the first interval will be directly after the interval before it. Formally, $ l_{i,1} = 1 $ , $ l_{i,j} \leq r_{i,j} $ for all $ 1 \le j \le k_i $ , $ r_{i,j-1} + 1 = l_{i,j} $ for all $ 2 \le j \le k_i $ , and $ r_{i,k_i} = m $ .
输出格式
Output one integer, which is the maximum possible quality of an eligible floor plan.
输入输出样例
输入样例 #1
4 5
2
1 2
3 5
2
1 3
4 5
3
1 1
2 4
5 5
3
1 1
2 2
3 5
输出样例 #1
36