307278: CF1332B. Composite Coloring
Memory Limit:512 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Composite Coloring
题意翻译
- 给定一个长度为 $n$ 的序列 $a$,满足序列 $a$ 中的元素都至少有三个因子(包括 $1$ 和自身)。 - 请用 $m$ 种颜色给 $a$ 染色,使得 $a$ 中每个元素都被染上颜色,并且每种颜色都被用到至少一次。 - 对于两个相同颜色的数字,要求他们的 $\gcd$ 大于 $1$,但是不要求 $\gcd$ 大于 $1$ 的数必须染相同颜色。 - 请构造一种可行的方案。**请注意,$m$ 是自己构造的而不是给出的,并且不必最小化 $m$**。 - 可以证明,对于给出的数据范围,一定存在一种 $m \leq 11$ 的方案,因此构造出的方案要求 $m \leq 11$。 - 多组数据,对于单组数据,$1 \leq n, a_i \leq 10^3$。且全部数据的 $n$ 之和不超过 $10^4$。题目描述
A positive integer is called composite if it can be represented as a product of two positive integers, both greater than $ 1 $ . For example, the following numbers are composite: $ 6 $ , $ 4 $ , $ 120 $ , $ 27 $ . The following numbers aren't: $ 1 $ , $ 2 $ , $ 3 $ , $ 17 $ , $ 97 $ . Alice is given a sequence of $ n $ composite numbers $ a_1,a_2,\ldots,a_n $ . She wants to choose an integer $ m \le 11 $ and color each element one of $ m $ colors from $ 1 $ to $ m $ so that: - for each color from $ 1 $ to $ m $ there is at least one element of this color; - each element is colored and colored exactly one color; - the greatest common divisor of any two elements that are colored the same color is greater than $ 1 $ , i.e. $ \gcd(a_i, a_j)>1 $ for each pair $ i, j $ if these elements are colored the same color. Note that equal elements can be colored different colors — you just have to choose one of $ m $ colors for each of the indices from $ 1 $ to $ n $ . Alice showed already that if all $ a_i \le 1000 $ then she can always solve the task by choosing some $ m \le 11 $ . Help Alice to find the required coloring. Note that you don't have to minimize or maximize the number of colors, you just have to find the solution with some $ m $ from $ 1 $ to $ 11 $ .输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 1000 $ ) — the number of test cases. Then the descriptions of the test cases follow. The first line of the test case contains a single integer $ n $ ( $ 1 \le n \le 1000 $ ) — the amount of numbers in a sequence $ a $ . The second line of the test case contains $ n $ composite integers $ a_1,a_2,\ldots,a_n $ ( $ 4 \le a_i \le 1000 $ ). It is guaranteed that the sum of $ n $ over all test cases doesn't exceed $ 10^4 $ .
输出格式
For each test case print $ 2 $ lines. The first line should contain a single integer $ m $ ( $ 1 \le m \le 11 $ ) — the number of used colors. Consider colors to be numbered from $ 1 $ to $ m $ . The second line should contain any coloring that satisfies the above conditions. Print $ n $ integers $ c_1, c_2, \dots, c_n $ ( $ 1 \le c_i \le m $ ), where $ c_i $ is the color of the $ i $ -th element. If there are multiple solutions then you can print any of them. Note that you don't have to minimize or maximize the number of colors, you just have to find the solution with some $ m $ from $ 1 $ to $ 11 $ . Remember that each color from $ 1 $ to $ m $ should be used at least once. Any two elements of the same color should not be coprime (i.e. their GCD should be greater than $ 1 $ ).
输入输出样例
输入样例 #1
3
3
6 10 15
2
4 9
23
437 519 865 808 909 391 194 291 237 395 323 365 511 497 781 737 871 559 731 697 779 841 961
输出样例 #1
1
1 1 1
2
2 1
11
4 7 8 10 7 3 10 7 7 8 3 1 1 5 5 9 2 2 3 3 4 11 6