307098: CF1301B. Motarack's Birthday
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Motarack's Birthday
题意翻译
$t$ 组数据。 给定一个 $n$ 和一个长度为 $n$ 的,除 $-1$ 外其它数字均为非负数的序列 $a$,要求将 $a$ 中所有 $-1$ 填充为 $k$,使得该序列相邻数字绝对值之差最小。 输出最小绝对值之差及填充的数字 $k$,如果有多个可能的 $k$,输出任意一个。题目描述
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $ a $ of $ n $ non-negative integers. Dark created that array $ 1000 $ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $ k $ ( $ 0 \leq k \leq 10^{9} $ ) and replaces all missing elements in the array $ a $ with $ k $ . Let $ m $ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $ |a_i - a_{i+1}| $ for all $ 1 \leq i \leq n - 1 $ ) in the array $ a $ after Dark replaces all missing elements with $ k $ . Dark should choose an integer $ k $ so that $ m $ is minimized. Can you help him?输入输出格式
输入格式
The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $ n $ ( $ 2 \leq n \leq 10^{5} $ ) — the size of the array $ a $ . The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ -1 \leq a_i \leq 10 ^ {9} $ ). If $ a_i = -1 $ , then the $ i $ -th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $ n $ for all test cases does not exceed $ 4 \cdot 10 ^ {5} $ .
输出格式
Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $ m $ and an integer $ k $ ( $ 0 \leq k \leq 10^{9} $ ) that makes the maximum absolute difference between adjacent elements in the array $ a $ equal to $ m $ . Make sure that after replacing all the missing elements with $ k $ , the maximum absolute difference between adjacent elements becomes $ m $ . If there is more than one possible $ k $ , you can print any of them.
输入输出样例
输入样例 #1
7
5
-1 10 -1 12 -1
5
-1 40 35 -1 35
6
-1 -1 9 -1 3 -1
2
-1 -1
2
0 -1
4
1 -1 3 -1
7
1 -1 7 5 2 -1 5
输出样例 #1
1 11
5 35
3 6
0 42
0 0
1 2
3 4