306888: CF1266G. Permutation Concatenation

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Permutation Concatenation

题意翻译

将 $1$ 到 $n$ 的排列按字典序连接为一个序列,序列长度为 $n\times n!$,求这个序列不同的连续子序列个数。 $1\leq n\leq 10^6$,答案对 $998244353$ 取模。

题目描述

Let $ n $ be an integer. Consider all permutations on integers $ 1 $ to $ n $ in lexicographic order, and concatenate them into one big sequence $ P $ . For example, if $ n = 3 $ , then $ P = [1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1] $ . The length of this sequence is $ n \cdot n! $ . Let $ 1 \leq i \leq j \leq n \cdot n! $ be a pair of indices. We call the sequence $ (P_i, P_{i+1}, \dots, P_{j-1}, P_j) $ a subarray of $ P $ . You are given $ n $ . Find the number of distinct subarrays of $ P $ . Since this number may be large, output it modulo $ 998244353 $ (a prime number).

输入输出格式

输入格式


The only line contains one integer $ n $ ( $ 1 \leq n \leq 10^6 $ ), as described in the problem statement.

输出格式


Output a single integer — the number of distinct subarrays, modulo $ 998244353 $ .

输入输出样例

输入样例 #1

2

输出样例 #1

8

输入样例 #2

10

输出样例 #2

19210869

说明

In the first example, the sequence $ P = [1, 2, 2, 1] $ . It has eight distinct subarrays: $ [1] $ , $ [2] $ , $ [1, 2] $ , $ [2, 1] $ , $ [2, 2] $ , $ [1, 2, 2] $ , $ [2, 2, 1] $ and $ [1, 2, 2, 1] $ .

Input

题意翻译

将 $1$ 到 $n$ 的排列按字典序连接为一个序列,序列长度为 $n\times n!$,求这个序列不同的连续子序列个数。 $1\leq n\leq 10^6$,答案对 $998244353$ 取模。

加入题单

上一题 下一题 算法标签: