306888: CF1266G. Permutation Concatenation
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Permutation Concatenation
题意翻译
将 $1$ 到 $n$ 的排列按字典序连接为一个序列,序列长度为 $n\times n!$,求这个序列不同的连续子序列个数。 $1\leq n\leq 10^6$,答案对 $998244353$ 取模。题目描述
Let $ n $ be an integer. Consider all permutations on integers $ 1 $ to $ n $ in lexicographic order, and concatenate them into one big sequence $ P $ . For example, if $ n = 3 $ , then $ P = [1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1] $ . The length of this sequence is $ n \cdot n! $ . Let $ 1 \leq i \leq j \leq n \cdot n! $ be a pair of indices. We call the sequence $ (P_i, P_{i+1}, \dots, P_{j-1}, P_j) $ a subarray of $ P $ . You are given $ n $ . Find the number of distinct subarrays of $ P $ . Since this number may be large, output it modulo $ 998244353 $ (a prime number).输入输出格式
输入格式
The only line contains one integer $ n $ ( $ 1 \leq n \leq 10^6 $ ), as described in the problem statement.
输出格式
Output a single integer — the number of distinct subarrays, modulo $ 998244353 $ .
输入输出样例
输入样例 #1
2
输出样例 #1
8
输入样例 #2
10
输出样例 #2
19210869