306790: CF1252A. Copying Homework

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Copying Homework

题意翻译

给定一个数字n和一串数列(数列长度为n) 要求输出新的一组数列,使得新的一组数列和给出的数列对应位置之差绝对值的和大于等于给出的n,其中新的数列的每一项不能相同 如果有多组答案,任意输出一组

题目描述

Danang and Darto are classmates. They are given homework to create a permutation of $ N $ integers from $ 1 $ to $ N $ . Danang has completed the homework and created a permutation $ A $ of $ N $ integers. Darto wants to copy Danang's homework, but Danang asks Darto to change it up a bit so it does not look obvious that Darto copied. The difference of two permutations of $ N $ integers $ A $ and $ B $ , denoted by $ diff(A, B) $ , is the sum of the absolute difference of $ A_i $ and $ B_i $ for all $ i $ . In other words, $ diff(A, B) = \Sigma_{i=1}^N |A_i - B_i| $ . Darto would like to create a permutation of $ N $ integers that maximizes its difference with $ A $ . Formally, he wants to find a permutation of $ N $ integers $ B_{max} $ such that $ diff(A, B_{max}) \ge diff(A, B') $ for all permutation of $ N $ integers $ B' $ . Darto needs your help! Since the teacher giving the homework is lenient, any permutation of $ N $ integers $ B $ is considered different with $ A $ if the difference of $ A $ and $ B $ is at least $ N $ . Therefore, you are allowed to return any permutation of $ N $ integers $ B $ such that $ diff(A, B) \ge N $ . Of course, you can still return $ B_{max} $ if you want, since it can be proven that $ diff(A, B_{max}) \ge N $ for any permutation $ A $ and $ N > 1 $ . This also proves that there exists a solution for any permutation of $ N $ integers $ A $ . If there is more than one valid solution, you can output any of them.

输入输出格式

输入格式


Input begins with a line containing an integer: $ N $ ( $ 2 \le N \le 100\,000 $ ) representing the size of Danang's permutation. The next line contains $ N $ integers: $ A_i $ ( $ 1 \le A_i \le N $ ) representing Danang's permutation. It is guaranteed that all elements in $ A $ are distinct.

输出格式


Output in a line $ N $ integers (each separated by a single space) representing the permutation of $ N $ integers $ B $ such that $ diff(A, B) \ge N $ . As a reminder, all elements in the permutation must be between $ 1 $ to $ N $ and distinct.

输入输出样例

输入样例 #1

4
1 3 2 4

输出样例 #1

4 2 3 1

输入样例 #2

2
2 1

输出样例 #2

1 2

说明

Explanation for the sample input/output #1 With $ A = [1, 3, 2, 4] $ and $ B = [4, 2, 3, 1] $ , $ diff(A, B) = |1 - 4| + |3 - 2| + |2 - 3| + |4 - 1| = 3 + 1 + 1 + 3 = 8 $ . Since $ 8 \ge 4 $ , $ [4, 2, 3, 1] $ is one of the valid output for this sample.

Input

题意翻译

对于两个长度为 $N$ 的排列 $A,B$,定义他们的距离为 $diff(A,B)=\sum_{i=1}^N|A_i-B_i|$。 给定长度为 $N$ 的排列 $A$,你需要找到一个长度同样为 $N$ 的排列 $B$ 使得它们的距离不低于 $N$。 如果这样的 $B$ 有不止一个,输出其中任意一个即可。

加入题单

上一题 下一题 算法标签: