306502: CF1207D. Number Of Permutations
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Number Of Permutations
题意翻译
给定长度为 $n$ 的数对列 $s_1 \sim s_n$,其中 $s_i = (a_i, b_i)$ 给定。**好序列**的定义是:仅看第一关键字或第二关键字都不按升序排序的序列。 输出符合题意的大小为 $n$ 的排列的方案数,使得经过这些排列中的任何一个的排列操作之后,序列 $s$ 会成为一个**好序列**。答案对 $998244353$ 取模(一个质数)。题目描述
You are given a sequence of $ n $ pairs of integers: $ (a_1, b_1), (a_2, b_2), \dots , (a_n, b_n) $ . This sequence is called bad if it is sorted in non-descending order by first elements or if it is sorted in non-descending order by second elements. Otherwise the sequence is good. There are examples of good and bad sequences: - $ s = [(1, 2), (3, 2), (3, 1)] $ is bad because the sequence of first elements is sorted: $ [1, 3, 3] $ ; - $ s = [(1, 2), (3, 2), (1, 2)] $ is bad because the sequence of second elements is sorted: $ [2, 2, 2] $ ; - $ s = [(1, 1), (2, 2), (3, 3)] $ is bad because both sequences (the sequence of first elements and the sequence of second elements) are sorted; - $ s = [(1, 3), (3, 3), (2, 2)] $ is good because neither the sequence of first elements $ ([1, 3, 2]) $ nor the sequence of second elements $ ([3, 3, 2]) $ is sorted. Calculate the number of permutations of size $ n $ such that after applying this permutation to the sequence $ s $ it turns into a good sequence. A permutation $ p $ of size $ n $ is a sequence $ p_1, p_2, \dots , p_n $ consisting of $ n $ distinct integers from $ 1 $ to $ n $ ( $ 1 \le p_i \le n $ ). If you apply permutation $ p_1, p_2, \dots , p_n $ to the sequence $ s_1, s_2, \dots , s_n $ you get the sequence $ s_{p_1}, s_{p_2}, \dots , s_{p_n} $ . For example, if $ s = [(1, 2), (1, 3), (2, 3)] $ and $ p = [2, 3, 1] $ then $ s $ turns into $ [(1, 3), (2, 3), (1, 2)] $ .输入输出格式
输入格式
The first line contains one integer $ n $ ( $ 1 \le n \le 3 \cdot 10^5 $ ). The next $ n $ lines contains description of sequence $ s $ . The $ i $ -th line contains two integers $ a_i $ and $ b_i $ ( $ 1 \le a_i, b_i \le n $ ) — the first and second elements of $ i $ -th pair in the sequence. The sequence $ s $ may contain equal elements.
输出格式
Print the number of permutations of size $ n $ such that after applying this permutation to the sequence $ s $ it turns into a good sequence. Print the answer modulo $ 998244353 $ (a prime number).
输入输出样例
输入样例 #1
3
1 1
2 2
3 1
输出样例 #1
3
输入样例 #2
4
2 3
2 2
2 1
2 4
输出样例 #2
0
输入样例 #3
3
1 1
1 1
2 3
输出样例 #3
4