306493: CF1206A. Choose Two Numbers

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Choose Two Numbers

题意翻译

设有两个正整数数列$A$和$B$,长度分别为$n$和$m$。试从两个数列中各找一个元素,使得这两个元素的和均**不**出现在原来的两个数列中。 可以证明有解。**输出任意一组解即可。** 保证$1\leq n,m\leq 100$,数列元素均在$(0,200]$间。

题目描述

You are given an array $ A $ , consisting of $ n $ positive integers $ a_1, a_2, \dots, a_n $ , and an array $ B $ , consisting of $ m $ positive integers $ b_1, b_2, \dots, b_m $ . Choose some element $ a $ of $ A $ and some element $ b $ of $ B $ such that $ a+b $ doesn't belong to $ A $ and doesn't belong to $ B $ . For example, if $ A = [2, 1, 7] $ and $ B = [1, 3, 4] $ , we can choose $ 1 $ from $ A $ and $ 4 $ from $ B $ , as number $ 5 = 1 + 4 $ doesn't belong to $ A $ and doesn't belong to $ B $ . However, we can't choose $ 2 $ from $ A $ and $ 1 $ from $ B $ , as $ 3 = 2 + 1 $ belongs to $ B $ . It can be shown that such a pair exists. If there are multiple answers, print any. Choose and print any such two numbers.

输入输出格式

输入格式


The first line contains one integer $ n $ ( $ 1\le n \le 100 $ ) — the number of elements of $ A $ . The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 200 $ ) — the elements of $ A $ . The third line contains one integer $ m $ ( $ 1\le m \le 100 $ ) — the number of elements of $ B $ . The fourth line contains $ m $ different integers $ b_1, b_2, \dots, b_m $ ( $ 1 \le b_i \le 200 $ ) — the elements of $ B $ . It can be shown that the answer always exists.

输出格式


Output two numbers $ a $ and $ b $ such that $ a $ belongs to $ A $ , $ b $ belongs to $ B $ , but $ a+b $ doesn't belong to nor $ A $ neither $ B $ . If there are multiple answers, print any.

输入输出样例

输入样例 #1

1
20
2
10 20

输出样例 #1

20 20

输入样例 #2

3
3 2 2
5
1 5 7 7 9

输出样例 #2

3 1

输入样例 #3

4
1 3 5 7
4
7 5 3 1

输出样例 #3

1 1

说明

In the first example, we can choose $ 20 $ from array $ [20] $ and $ 20 $ from array $ [10, 20] $ . Number $ 40 = 20 + 20 $ doesn't belong to any of those arrays. However, it is possible to choose $ 10 $ from the second array too. In the second example, we can choose $ 3 $ from array $ [3, 2, 2] $ and $ 1 $ from array $ [1, 5, 7, 7, 9] $ . Number $ 4 = 3 + 1 $ doesn't belong to any of those arrays. In the third example, we can choose $ 1 $ from array $ [1, 3, 5, 7] $ and $ 1 $ from array $ [7, 5, 3, 1] $ . Number $ 2 = 1 + 1 $ doesn't belong to any of those arrays.

Input

题意翻译

设有两个正整数数列$A$和$B$,长度分别为$n$和$m$。试从两个数列中各找一个元素,使得这两个元素的和均**不**出现在原来的两个数列中。 可以证明有解。**输出任意一组解即可。** 保证$1\leq n,m\leq 100$,数列元素均在$(0,200]$间。

加入题单

上一题 下一题 算法标签: