306241: CF1166D. Cute Sequences
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Cute Sequences
题意翻译
给你一个正数m,如果正数序列(x1,x2,...,xn)满足以下条件的就是m-cute序列:对于任意的i(2<=i<=n),xi=xi-1+xi-2+...x1+ri,ri是满足1<=ri<=m. 给你q(1<=q<=10^3)组询问,每组包含三个正数a,b和m(1≤a,b,m≤10^14, a≤b)。对于每组询问你必须确定是否存在一个m-cute序列,开始是a,结束是b,如果存在输出这个序列,如果不存在输出-1. 如果存在,输出时,先输出序列的长度k(1<=k<=50),然后依次输出m-cute序列:x1,x2,...xk,其中满足x1=a,xk=b。注意序列长度不超过50,如果有多组数据,输出任意一组就可以。题目描述
Given a positive integer $ m $ , we say that a sequence $ x_1, x_2, \dots, x_n $ of positive integers is $ m $ -cute if for every index $ i $ such that $ 2 \le i \le n $ it holds that $ x_i = x_{i - 1} + x_{i - 2} + \dots + x_1 + r_i $ for some positive integer $ r_i $ satisfying $ 1 \le r_i \le m $ . You will be given $ q $ queries consisting of three positive integers $ a $ , $ b $ and $ m $ . For each query you must determine whether or not there exists an $ m $ -cute sequence whose first term is $ a $ and whose last term is $ b $ . If such a sequence exists, you must additionally find an example of it.输入输出格式
输入格式
The first line contains an integer number $ q $ ( $ 1 \le q \le 10^3 $ ) — the number of queries. Each of the following $ q $ lines contains three integers $ a $ , $ b $ , and $ m $ ( $ 1 \le a, b, m \le 10^{14} $ , $ a \leq b $ ), describing a single query.
输出格式
For each query, if no $ m $ -cute sequence whose first term is $ a $ and whose last term is $ b $ exists, print $ -1 $ . Otherwise print an integer $ k $ ( $ 1 \le k \leq 50 $ ), followed by $ k $ integers $ x_1, x_2, \dots, x_k $ ( $ 1 \le x_i \le 10^{14} $ ). These integers must satisfy $ x_1 = a $ , $ x_k = b $ , and that the sequence $ x_1, x_2, \dots, x_k $ is $ m $ -cute. It can be shown that under the problem constraints, for each query either no $ m $ -cute sequence exists, or there exists one with at most $ 50 $ terms. If there are multiple possible sequences, you may print any of them.
输入输出样例
输入样例 #1
2
5 26 2
3 9 1
输出样例 #1
4 5 6 13 26
-1