306184: CF1159B. Expansion coefficient of the array
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Expansion coefficient of the array
题意翻译
给一个长度为$n$的非负数列$a_1,a_2,\dots,a_n$,找到最大的整数$k$使对于任意$1\le i,j\le n$,都有$k\cdot|i-j|\le\min(a_i,a_j)$题目描述
Let's call an array of non-negative integers $ a_1, a_2, \ldots, a_n $ a $ k $ -extension for some non-negative integer $ k $ if for all possible pairs of indices $ 1 \leq i, j \leq n $ the inequality $ k \cdot |i - j| \leq min(a_i, a_j) $ is satisfied. The expansion coefficient of the array $ a $ is the maximal integer $ k $ such that the array $ a $ is a $ k $ -extension. Any array is a 0-expansion, so the expansion coefficient always exists. You are given an array of non-negative integers $ a_1, a_2, \ldots, a_n $ . Find its expansion coefficient.输入输出格式
输入格式
The first line contains one positive integer $ n $ — the number of elements in the array $ a $ ( $ 2 \leq n \leq 300\,000 $ ). The next line contains $ n $ non-negative integers $ a_1, a_2, \ldots, a_n $ , separated by spaces ( $ 0 \leq a_i \leq 10^9 $ ).
输出格式
Print one non-negative integer — expansion coefficient of the array $ a_1, a_2, \ldots, a_n $ .
输入输出样例
输入样例 #1
4
6 4 5 5
输出样例 #1
1
输入样例 #2
3
0 1 2
输出样例 #2
0
输入样例 #3
4
821 500 479 717
输出样例 #3
239