306065: CF1141A. Game 23
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:12
Solved:0
Description
Game 23
题意翻译
给出两个数 $n,m (1 \le n \le m \le 5 \cdot 10^{8})$ 询问能否通过将 $n$ 乘 $2$ 和将 $n$ 乘 $3$ 两种操作使 $n$ 变为 $m$ ,如果可行,输出最小操作次数,如果不可行,输出 $-1$题目描述
Polycarp plays "Game 23". Initially he has a number $ n $ and his goal is to transform it to $ m $ . In one move, he can multiply $ n $ by $ 2 $ or multiply $ n $ by $ 3 $ . He can perform any number of moves. Print the number of moves needed to transform $ n $ to $ m $ . Print -1 if it is impossible to do so. It is easy to prove that any way to transform $ n $ to $ m $ contains the same number of moves (i.e. number of moves doesn't depend on the way of transformation).输入输出格式
输入格式
The only line of the input contains two integers $ n $ and $ m $ ( $ 1 \le n \le m \le 5\cdot10^8 $ ).
输出格式
Print the number of moves to transform $ n $ to $ m $ , or -1 if there is no solution.
输入输出样例
输入样例 #1
120 51840
输出样例 #1
7
输入样例 #2
42 42
输出样例 #2
0
输入样例 #3
48 72
输出样例 #3
-1