305989: CF1119H. Triple
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Triple
题意翻译
你的生日礼物是$n$个整数三元组。第$i$个三元组是$\{a_i,b_i,c_i\}$,所有数字$j$都满足$0\le j<2^k$,$k$是一个固定的数字,将由题目输入。 一天,你玩三元组玩腻了,所以你有了3个新的整数$x,y,z$,然后填充了$n$个数组。第$i$个数组有$x$个$a_i$,$y$个$b_i$,$z$个$c_i$.这样,每个数组的大小都是$x+y+z$. **你希望从每个数组里选择1个整数,使得它们的xor(按位异或)值恰好为$t$.** 对于区间$[0,2^k-1]$内的每个数字$t$,输出满足上面的条件的方案数 模 $998244353$ 输入: 第一行读入$n,k$,第二行读入$x,y,z$,接下来读入$n$行。第$i$行读入$a_i$,$b_i$,$c_i$。 输出: 一行$2^k$个整数,用空格分隔。第$i$个数字是从每个数组里选一个整数使它们的xor值等于$t=i-1$的方案数模$998244353$ 贡献者:SIGSEGV题目描述
You have received your birthday gifts — $ n $ triples of integers! The $ i $ -th of them is $ \lbrace a_{i}, b_{i}, c_{i} \rbrace $ . All numbers are greater than or equal to $ 0 $ , and strictly smaller than $ 2^{k} $ , where $ k $ is a fixed integer. One day, you felt tired playing with triples. So you came up with three new integers $ x $ , $ y $ , $ z $ , and then formed $ n $ arrays. The $ i $ -th array consists of $ a_i $ repeated $ x $ times, $ b_i $ repeated $ y $ times and $ c_i $ repeated $ z $ times. Thus, each array has length $ (x + y + z) $ . You want to choose exactly one integer from each array such that the XOR (bitwise exclusive or) of them is equal to $ t $ . Output the number of ways to choose the numbers for each $ t $ between $ 0 $ and $ 2^{k} - 1 $ , inclusive, modulo $ 998244353 $ .输入输出格式
输入格式
The first line contains two integers $ n $ and $ k $ ( $ 1 \leq n \leq 10^{5} $ , $ 1 \leq k \leq 17 $ ) — the number of arrays and the binary length of all numbers. The second line contains three integers $ x $ , $ y $ , $ z $ ( $ 0 \leq x,y,z \leq 10^{9} $ ) — the integers you chose. Then $ n $ lines follow. The $ i $ -th of them contains three integers $ a_{i} $ , $ b_{i} $ and $ c_{i} $ ( $ 0 \leq a_{i} , b_{i} , c_{i} \leq 2^{k} - 1 $ ) — the integers forming the $ i $ -th array.
输出格式
Print a single line containing $ 2^{k} $ integers. The $ i $ -th of them should be the number of ways to choose exactly one integer from each array so that their XOR is equal to $ t = i-1 $ modulo $ 998244353 $ .
输入输出样例
输入样例 #1
1 1
1 2 3
1 0 1
输出样例 #1
2 4
输入样例 #2
2 2
1 2 1
0 1 2
1 2 3
输出样例 #2
4 2 4 6
输入样例 #3
4 3
1 2 3
1 3 7
0 2 5
1 0 6
3 3 2
输出样例 #3
198 198 126 126 126 126 198 198